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GCSAC: Geometrical Constraint SAmple Consensus for
Primitive Shapes Estimation in 3-D Point Cloud

Abstract: Estimating parameters of a primitive shape from a 3-D point cloud
data is a challenging problem due to data containing noises and computational
time demand. In this paper, we present a new robust estimator (named GCSAC,
Geometrical Constraint SAmple Consensus) aimed at solving such issues. The
proposed algorithm takes into account geometrical constraints to construct
qualified samples for the estimation. Instead of randomly drawing minimal subset
of sample, explicit geometrical properties of the interested primitive shapes (e.g.,
cylinder, sphere and cone) are used to drive sampling procedures. At each iteration
of GCSAC, the minimal subset sample is selected based on two criteria (1) It must
ensure a consistency with the estimated model via a roughly inlier ratio evaluation;
(2) The samples satisfy geometrical constraints of the interested objects. Based
on the obtained good samples, model estimation and verification procedures of
the robust estimator are deployed in GCSAC. Extensive experiments have been
conducted on synthesized and real datasets for evaluation. Comparing with the
common robust estimators of RANSAC family (RANSAC, PROSAC, MLESAC,
MSAC, LO-RANSAC and NAPSAC), GCSAC outperforms in term of both the
precision of the estimated model and computational time. The implementations
of the proposed method and the datasets are made publicly available.

Keywords: Robust Estimator; Primitive Shape Estimation; RANSAC and
RANSAC Variations; Quality of Samples; Point Cloud data.

1 Introduction

Estimating parameters of a primitive shape is a fundamental research in the fields of robotic
and computer vision. The geometrical model of an interested object such as a plane, sphere,
cylinder, cone, can be estimated by two to seven geometrical parameters. A Random Sample
Consensus (RANSAC) (Fischler and Bolles, 1981) and its paradigm attempt to extract as
good as possible shape parameters which are objected either heavy noise in the data or
processing time constraints. For being more accurate, faster and more robust, the RANSAC
family focuses on either a better hypothesis from random samples or higher accuracy of data
satisfying the estimated model. In this paper, we propose to exploit geometrical constraints
to obtain a qualified Minimal Sample Set (MSS), i.e. good samples. This sample set can be
used to generate better hypotheses, and as a result estimated model is achievable.

Originally, a RANSAC paradigm draws randomly a MSS from a point cloud data without
any assumptions. As result, RANSAC must run a relatively large number of iterations to find
an optimal solution before stopping criterion. To improve performances, RANSAC-based
methods (Choi et al., 2009) focus on either a better hypothesis from random samples or
higher quality of the samples satisfying the estimated model. In this paper, we tackle a new
sampling procedure which utilizes geometrical constraints to qualify a MSS. We examine
the proposed method with common primitive shapes such as a cylinder, a sphere, and a
cone.
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In the proposed robust estimator, named GCSAC (Geometrical Constraint SAmple
Consensus), a MSS consists of samples which ensure two criteria: (1) the samples must
be consistent with the estimated model based an approximate inlier ratio evaluation; (2)
the samples must satisfy geometrical constraints of the interested objects (e.g., cylinder,
sphere, cone constraints). More specifically, the key idea of the proposed method is guiding
minimal sample set based on searching normal vector constraints of the geometric models.
The constraints are derived from the explicit geometrical properties of the interested
shapes. The good samples of a certain MSS are highly expected to generate a consensus
set. Consequently, the number of iterations could be adaptively updated (similar to the
termination manner of the adaptive RANSAC (Hartley and Zisserman, 2004)). In GCSAC,
we utilize the maximum log-likelihood of MLESAC algorithm (Torr and Zisserman, 2000)
to evaluate the estimated model. Finally, the effectiveness of the proposed method is
confirmed by fitting common shapes such as a sphere, cylinder and cone in both synthesized
and public datasets. In these evaluations, GSSAC performances are compared with common
RANSACs as original RANSAC (Fischler and Bolles, 1981), PROSAC (Chum and Matas,
2005), MLESAC (Torr and Zisserman, 2000), LO-SAC (Chum et al., 2003), NAPSAC
(Myatt et al., 2002). The implementations of the proposed method and the datasets are made
publicly available (Authors, 2017)

2 RELATED WORK

For a general introduction and performances of RANSAC family, readers can refer to good
surveys in (Raguram et al., 2008; Choi et al., 2009). In the context of this research, we
briefly survey related works which are categorized into two topics. First, efficient schemes
on the selection of minimal subset of samples for RANSAC-based robust estimators; and
second, techniques for estimating parameters of the primitive shapes.

For the first category, because the original RANSAC is very general with a
straightforward implementation, it always requires considerable computational time. Many
RANSAC variants have been proposed with further optimization for a minimal sample
set (MSS) selection. Progressive Sample Consensus or PROSAC (Chum and Matas, 2005)
orders quality of samples through a similarity function of two corresponding points in the
context of finding good matching features between a pair of images. In PROSAC algorithm,
the most promising hypotheses are attempted earlier, therefore drawing the samples is
implemented in a more meaningful order. However, PROSAC faces critical issues for
defining the similarity function. LO-RANSAC (Chum et al., 2003) and its fixed version
LO+-RANSAC (Lebeda et al., 2012) add local optimization steps within RANSAC to
improve accuracy. To speed up the computation, adaptive RANSAC (Hartley and Zisserman,
2004) probes the data via the consensus sets in order to adaptively determine the number
of selected samples. The algorithm is immediately terminated when a smaller number of
iterations has been obtained. With the proposed method, the good samples are expected
to generate the best model as fast as possible. Therefore, the termination condition of the
adaptive RANSAC (Hartley and Zisserman, 2004) should be explored. Recently, USAC
(Raguram et al., 2013) introduces a new frame-work for a robust estimator. In the USAC
frame-work, some strategies such as the sample check (Stage 1b) or the model check
(Stage 2b), before and after model estimation, respectively, are similar to our ideas in this
work. However, USAC does not really deploy an estimator for primitive shape(s) from
a point cloud. A recent work (Kohei et al., 2016) proposes to use geometric verification
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within a RANSAC frame-work. The authors deployed several check procedures such as
sample relative configuration check based on the epipolar geometry. Rather than the "check"
procedures, our strategies anticipate achieving the best model as soon as possible. Therefore,
the number of iterations is significantly reduced thanks to the results of the search for good
sample process. The RANSAC-based algorithm used in the method of Chen et al. (Chen
et al., 1999) and Aiger et al. (Aiger et al., 2008) for registering of partially overlapping
range images and partial surfaces of a 3D object.

For primitive shape estimation from 3-D point clouds, readers can refer to a survey
on feature-based techniques (Alhamzi and Elmogy, 2014). Relevant fitting techniques, for
instance, multiscale super-quadric fitting in (Duncan et al., 2013), Hough transform in
(Osselman et al., 2004), are commonly used. Marco et al. (Marco et al., 2014), Anas et al.
(Anas et al., 2013) used the 3-D Hough Transform to estimate, extract sphere from point
cloud data. However, the robust estimators (e.g., RANSAC family (Choi et al., 2009)) are
always preferred techniques. Original RANSAC (Fischler and Bolles, 1981) demonstrates
itself robust performances in estimating cylinders from range data. In (Trung-Thien et al.,
2015), normal vectors and curvature information are used for parameter estimation and
extraction of cylinders. The cylindrical objects are also interested in the analytic geometrical
techniques. The authors in (Garcia, 2009) and (Schnabel et al., 2007) formulate primitive
shapes (e.g., line, plane, cylinder, sphere, cone) using two to seven parameters such as a
cylinder has seven parameters, a sphere has four parameters, a cone has seven parameters,
etc. Schnabel et al. (Schnabel et al., 2007) defines primitive shapes through some samples
and their normal vectors. In this study, geometrical analysis of a cylinder in (Schnabel et al.,
2007) is adopted for defining criteria of the qualified samples as well as for estimating
parameters of the interested model from a 3-D point cloud.

3 PROPOSED METHOD

3.1 Overview of the proposed robust estimator (GCSAC)

To estimate parameters of a primitive shape, there are two main steps hypothesis-
and-verification in the RANSAC-based algorithms (Choi et al., 2009) (e.g., RANSAC,
MLESAC, PROSAC, MSAC, LOSAC, NAPSAC, .etc). First, to estimate the model,
either drawing randomly a Minimal Sample Set (MSS)(RANSAC, MLESAC, MSAC) or
semi-random (PROSAC) or using constraints of the sample’s distribution (NAPSAC) is
performed; Then, the estimated model is validated via a certain criteria. This scheme is
repeated K iterations to choose the best model. These procedures are shown in the top
panel of Fig. 1. In this study, the proposed robust estimator (GCSAC) will be deployed for
several types of the primitive shapes such as cylinder, sphere, cone. The implementations
of GCSAC algorithm are shown in the bottom panel of Fig. 1. At the initial iterations, the
proposed GCSAC constructs a MSS by the random sampling scheme and using a low inlier
threshold to validate the estimated model. After only (few) random sampling iterations, the
candidates of good samples could be initialized due to a weak-requirement of the inlier ratio.
Once initial MSS is established, its samples will be updated by searching the qualified ones
(or good samples) so that the geometrical constraints of the interested model is satisfied. The
estimated model is evaluated according to Maximum Log-Likelihood criteria as MLESAC
(Torr and Zisserman, 2000). The final step is to determine the termination condition, which
is adopted from the adaptive RANSAC algorithm (Hartley and Zisserman, 2004). Once the
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Figure 1 Top panel: Over view of RANSAC-based algorithm. Bottom panel: A diagram of the
GCSAC’s implementations.

higher inlier ratio is obtained, the criterion termination K for determining the number of
sample selection is updated by:

K =
log(1− p)
log(1− wm)

(1)

where p is the probability to find a model describing the data, m is the minimal number of
samples to estimate a model,w is percentage of inliers in the point cloud. While p is usually
set by a fixed value (e.g., p = 0.99 as a conservative probability),K therefore depends onw
and m. The algorithm terminates as soon as the number of iterations of current estimation
is less than that has already been performed.

Obviously, defining the geometrical criteria, which are to search the good samples, is
the most important. Let denote U∗n storing m sample points to estimate a model, where
m = 2 for cylinders or spheres, and m = 3 for cones. Based on the idea of the adaptive
RANSAC (Hartley and Zisserman, 2004) to probe initial samples, GCSAC starts from
roughly select of initial good samples. To initialize a set U∗n, we assume that the worst case
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of inlier ratio (or a weak-requirement of the inlier ratio, wt = 0.1 or 10% inlier) is pre-
determined. As expectedly, a consensus set containing at least 10% inlier is easily found.
Once a MSS is found, m− 1 samples is randomly selected for preserving and a remaining
one, mth, will be replaced by better one so that the set U∗n is the best satisfied geometrical
constraints of the interested shape. Consequently, the model is estimated from good samples
that directly effects to estimating the inlier ratio at current iteration. At next iteration, U∗n
is reset (U∗n = ∅) for other estimations. If U∗n could not be initialized (or there is none
of iterations which the condition wi ≥ wt is not satisfied), GCSAC algorithm degrades to
the original RANSAC. The geometrical principles and constraints of a primitive shape are
explained in Section 3.2.

3.2 Geometrical analyses and constraints for qualifying good samples

In following sections, the principles of 3-D the primitive shapes are explained. Based on
this geometrical analysis, the related constraints are given to select good samples.

3.2.1 Geometrical analysis for cylindrical objects

For geometrical analysis of a cylinder object, we adopted the analysis given by (Schnabel
et al., 2007). A cylinder is determined by following parameters: a center point on the cylinder
axis, denoted as Ic(x0, y0, z0); the vector γc of main axis direction; and its radius Rc. The
geometrical relationships of the cylindrical parameters are shown in Fig. 2.

A cylinder is estimated from two points (p1, p2) (two grey-squared points in Fig. 2(a))
and their corresponding normal vectors (n1,n2) (blue lines in Fig. 2(a)). The normal vector
of any point is computed following the approach in Holz et al. (Dirk Holz et al., 2011). At
each point pi, k-nearest neighbors kn of pi are determined within a radius r. The normal
vector of pi is therefore reduced to analysis of eigenvectors and eigenvalues of the covariance
matrix C, that is given by:

C =

kn∑
i

(pi − pav)(pi − pav)T CVj = λjVj , j ∈ 0, 1, 2 (2)

where pav = 1
kn

∑kn
i pi represents a 3-D centroid of the nearest neighbors. λj is the j-th

eigenvalue of the covariance matrix, and Vj is the j-th eigenvector found by Eq. (2). The
first eigenvector V0 corresponding to least eigenvalue λ0 will be the normal vector at sample
point pi.

Let γc is the main axis direction (pink line in Fig. 2(a)) of the cylinder. It is estimated
by γc = n1 × n2. To estimate the center point Ic, we project two parametric lines L1 =
p1 + tn1 and L2 = p2 + tn2 along the axis onto the PlaneY plane (see a green plane in
Fig. 2(b)). The normal vector of this plane is estimated by a cross product of γc and n2

vectors (γc × n2). The centroid point Ic (see a red point in Fig. 2(d)) is the intersection of
L1, L2 (see two green line in Fig. 2(c)). The radiusRc is set by the distance between Ic and
p1 on that plane. The estimated cylinder from a point cloud is illustrated in Fig. 2(d). The
height of the estimated cylinder is normalized to 1. It is noticed that the estimated cylinder
in Fig. 2(d) is a wrong estimation because the hypothesis in this case consists of an inlier
p2 and an outlier p1 sample.

The geometrical constraints for cylindrical objects: To deploy the geometrical
constraints for cylindrical objects, let’s examine the following example. In each hypothesis,



6 Author et al.

p1

p2
n2

n1

γc

p1

p2 n1

n2

γc

p1

p2

γc

n1

n2

p1

p2

γc

Ic

n1
n2

Estimated 
cylinder

PlaneY
PlaneY

L1

L2

L1

L2

(a) (b) (c) (d)
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Figure 3 Illustration of the geometrical constraints applied in GCSAC.

a MSS could be two within three samples p1, p2, and p3, as shown in Fig. 3(a). In the
case of drawing two random points p1, p3, obviously, the first criterion is quickly satisfied
because both of these samples are inliers (wi is larger than wt = 0.1). However, as shown
in Fig. 2(a), the direction of the axis γ2 is totally different from the ground-truth data, it
is estimated as the cross product of n1, n3 (n1 × n3). Our second criteria (or search good
samples) aims to update the initial samples (expectedly, p3 should be replaced by p2). To
obtain this, we observe that the best case for estimating a cylinder is that normal vectors of
two samples are crossed lines or intersecting together, as shown in Fig. 3(b). In the other
words, n1 needs to be perpendicular to n∗2 where n∗2 is a projection of n2 onto a plane π
whose normal vector nπ is nPlaneY × n1. This observation leads to the criteria below:

cp = argmin
p2∈{Un\p1}

{n1 · n∗2} (3)

If cp is close to 0 then n1 and n∗2 are orthogonal. It is noticed that in the example as
shown in Fig. 3(a), the projection of n3 onto a plane π should be parallel to n1. Therefore
the dot product n1 · n∗3 is a large scalar value.
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Figure 4 Estimating parameters of a sphere from 3-D points. Red points are inlier points. In this
figure, p1, p2 is two selected samples for estimating a sphere (two gray points), they are
outlier points. Therefore, the estimated sphere is wrong of centroid and radius (see green
sphere (d)).

3.2.2 Geometrical analysis for a spherical object

A sphere is determined by the following parameters: a centroid point which is denoted as
Isp(x0, y0, z0); its radius Rsp. To estimate sphere’s parameters, Schnabel et al. (Schnabel
et al., 2007) propose to use two points (p1, p2) with their corresponding normal vectors
(n1,n2) (see Fig. 4(a)). The centroid Isp (a pink point Fig. 4(c)) is a middle point of the
shortest line (a green line of Fig. 4(b)) which segments two lines given by (p1,n1) and
(p2,n2). This segmented line is illustrated by papb in Fig. 4(b). The radiusRsp is determined
by averaging the distance of Isp to p1 and Isp to p2. Illustration of the estimated sphere is
shown in Fig. 4(d).

The geometrical constraints for fitting spherical objects: As above denoted, a sphere
is estimated from two points (p1, p2) and their normal vectors (n1,n2). In GCSAC, once
set U∗n consisting of the initial good samples is conducted, we store p1 and search p2 in
the whole point cloud. We observe that to generate a sphere, the triangle (p1Ispp2) should
be isosceles, as shown in Fig. 4(e). Consequently, this observation forms a geometrical
constraint for searching p2 as following:

shp = argmin
p2∈{Un\p1}

{(|p1Isp| − |p2Isp|)} (4)

The geometrical constraints in Eq. (4) means that if shp is close to 0 then the triangle
p1Ispp2 is nearly isosceles one.
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Figure 5 (a) Estimating parameters of a cone from 3-D points by (Schnabel et al., 2007); (b)
Illustrating constraint of estimating the good cone.

3.2.3 Geometrical analysis for a conical object

A cone is determined by the following parameters: an apex on the cone axis which is
denoted as Ap(x0, y0, z0); a vector of the main direction axis denoted as γco; an opening
angle of the cone denoted as ϑ. To estimate these parameters, Schnabel et al. (Schnabel
et al., 2007) utilize three points (p1, p2, p3) and their normal vectors (n1,n2,n3) (see Fig.
5(a)). Especially, to identify the position of the apex Ap (see a pink point of Fig. 5(d)),
intersections of the three planes which are defined by points and normal vector pairs (red
(pl1), green (pl2), blue (pl3) planes in Fig. 5(b)), are defined by Eq. 5.

Ap = Intersection(pl1, pl2, pl3)/

pl1(p1,×(n2,n3)); pl2(p2,×(n1,n3)); pl3(p3,×(n1,n2)); (5)

Definitions of three points E1, E2, E3 (see three grey points in Fig. 5(c)) are given by
Eq. (6):

E1 = Ap +
p1 −Ap
|| p1 −Ap ||

;E2 = Ap +
p2 −Ap
|| p2 −Ap ||

;E3 = Ap +
p3 −Ap
|| p3 −Ap ||

(6)

The normal vector of a plane is defined by three points E1, E2, E3, it is the direction of
main axis γco which is marked as a black line of Fig. 5(e). The opening angle ϑ is identified
by Eq. 7. The estimated cone is shown in Fig. 5(e).

ϑ =

∑
i arcos(pi −Ap)γco

3
; (i = 1, 2, 3) (7)
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Table 1 The characteristics of the synthesized datasets for cylinder, sphere, cone objects

Dataset Characteristics of the generalized data
Height/
Radius Direction of main axis

Spatial distribution
of inliers

Spread of
outliers

dC1, dC4
dSP1, dSP4
dCO1, dCO4

1 /2
/1
1/1

parallel with the z-axis

parallel with the z-axis

Around of a cylinder
Around of a sphere
Around of a cone

[-3, 3], [-4, 4]
[-3, 3], [-4, 4]
[-3, 3], [-4, 4]

dC2, dC5
dSP2, dSP5
dCO2, dCO5

1 /2
/1
1/1

parallel withthe y-axis

parallel with the y-axis

Around of a cylinder
Around of a sphere
Around of a cone

[-3, 3], [-4, 4]
[-3, 3], [-4, 4]
[-3, 3], [-4, 4]

dC3, dC6
dSP3, dSP6
dCO3, dCO6

1 /2
/1
1 /1

parallel with the y-axis

parallel with the y-axis

one half of a cylinder
one half of a sphere
one half of a cone

[-3, 3], [-4, 4]
[-3, 3], [-4, 4]
[-3, 3], [-4, 4]

The geometrical constraints for fitting conical objects: Similar to the cylinder and
sphere, onceU∗n consisting of the initial good samples, we storep1, p2 and search a remaining
sample p3. The p3 will be replaced by a new sample which ensures so that the tetrahedra
(ApE1E2E3) has all surfaces being near identical. It searches in Un and is difference p1,
p2. In other words, its surfaces should be isosceles triangles, defined by:

cop = argmin
p3∈{Un\{p1,p2}}

{(|| ApE1 || − || ApE2 ||)− (|| ApE1 || − || ApE3 ||)} (8)

If cop is close to 0 then the triangles (ApE1E2) and (ApE1E3) and (ApE2E3) are
isosceles triangles at a apex Ap and are identical, as shown in Fig. 5(f).

4 EXPERIMENTAL RESULT

4.1 Evaluation Datasets

We evaluate performances of GCSAC on two types of datasets. The first is synthesized
datasets and second is realistic ones. These datasets consists of cylinders, spheres and
cones. For each interested object, the synthesized dataset consists of six different subsets.
Characteristics of each subset are described in Table 1. Major differences could be the
main axis’s orientation, σ of the normal distribution for generating outlier/inlier data; or the
spatial distribution of inliers.

For the cylinder dataset (’first cylinder’), they are denoted from dC1 to dC6. In each
subset dCi, inlier ratio is increased by a step of 5% in a range from 15% to 80 %. Therefore,
there are fourteen point clouds. They are denoted dS1 to dS14. A point cloud dSi consists
of 3000 sample points. To generate cylinder dataset, an inlier data point (xi, yi, zi) of dSi
is lying on a cylinder surface which is generated as follow: xi = cos(θi), zi = sin(θi), yi
is randomly selected in [0, 1], θi is randomly selected from [0, 2π]. Outliers are generated
randomly in a range as given in the last column in Table 1. Fig. 6(a) illustrates the synthesized
data of dC1, dC2, dC3 whose inlier ratio equals 50%.

Similar to cylinder dataset, point clouds of the sphere dataset ’first sphere’ are denoted
from dSP1 to dSP6. These point clouds are generated from surface of a true sphere: x2 +
y2 + z2 = 1. Some illustrations of the synthesised sphere are presented in Fig. 6. Point
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Figure 6 Illustrations of three synthesized datasets with 50% inlier ratio. (a) dC1, dC2, dC3 point
clouds of the cylinders, (b) dSP1, dSP2, dSP3 point clouds of the spheres (c)
dCO1, dCO2, dCO3 point clouds of the spheres The red points are inliers, whereas blue
points are outliers.

clouds of the cone dataset ’first cone’ are denoted from dCO1 to dCO6. We also generate
random points of the cone as outliers. They are illustrated in Fig. 6(c).

In addition, we evaluate the proposed method on real datasets. For the cylindrical objects,
the dataset is collected from a public dataset (Lai et al., 2011) which contains 300 objects
belonging to 51 categories. It named ’second cylinder’. In this study, we collect only videos
consisting of the cylindrical objects. Totally, the cylinder dataset consists of 8 coffee mugs,
14 food cans, 5 food cups, 6 soda cans. Fig. 8 shows some instances of the collected cylinders
in the second dataset. For the spherical object, the dataset consists of two balls collected
from four real scenes. Each scene has been included 500 frames. It named ’second sphere’.
This is a public sphere dataset collected in (Le et al., 2016). The point clouds of balls, as
illustrated in Fig. 7(a), are manually separated from other objects in a scene such as table
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Figure 7 (a) Illustrating the separating the point cloud data of a ball in the scene. (b) Illustrating the
point cloud data of a cone and preparing the ground truth of evaluating the fitting a cone.
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Figure 8 Examples of four cylindrical-like objects collected from the ’second cylinder’ dataset.

plane, wall, floor, etc. Finally, point cloud data of the cone objects, named ’second cone’,
is collected from dataset given in (Scharstein and Szeliski, 2003). To prepare ground-truth
data, we used the stereo data to segment each cone object and convert them to point cloud
data, as illustrated in Fig. 7(b).

4.2 Evaluation Measurements

Let denote a general form for different interested objects (e.g., cylinder, sphere, cone)
as following. The ground-truth of the interested object is Mt(xt, yt, zt, rt, at, ot) and the
estimated one is Me(xe, ye, ze, re, ae, oe)where (xt, yt, zt), (xe, ye, ze) are the coordinates
of the center points of a cylinder, sphere, or cone; More specially, rt, re are the radius of
a cylinder and sphere, respectively. ot, oe are opening angles of the estimated cone and
ground-truth one, respectively. Parameters at, ae are the angles between the main axis of the
estimated shapes and the ground-truth ones. To evaluate the performance of the proposed
method, we use following measurements:

- Let denote the relative error Ew of the estimated inlier ratio. The smaller Ew is, the
better the algorithm is.

Ew =
|w − wgt|
wgt

× 100 (9)
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wherewgt is the defined inlier ratio of ground-truth;w is the inlier ratio of the estimated
model.

w =
number of inliers

number of samples
(10)

- The total distance errors Sd (Faber and Fisher, 2001) is calculated by summation of
distances from any point pj to the estimated model Me. Sd is defined by:

Sd =

N∑
j=1

d(pj ,Me) (11)

- The processing time tp is measured in milliseconds (ms). The smaller tp is the faster
the algorithm is.

- The relative error of the estimated center (only for the synthesized datasets) Ed: is an
Euclidean distance between the estimated center Ee and a ground-truth one Egt. Ed
is defined by:

Ed = |Ee − Egt| (12)

- The relative error of the estimated radius (for evaluating cylinders and spheres) Er:
is the difference between the estimated radius re and the ground-truth one rgt. Er is
defined by:

Er =
|re − rgt|

rgt
× 100% (13)

For the conical object, Er means the opening angle error of the estimated cone. It is
defined by:

Er =
|oe − ogt|

ogt
× 100% (14)

- Let denote Ea infer a difference between the estimated angle ae and ground-truth one
agt. Ea (Kwon et al., 2003) is calculated by:

Ea = |ae − agt| (15)

The proposed method (GCSAC) is compared with six common ones in RANSAC family.
They are original RANSAC (Fischler and Bolles, 1981), PROSAC (Chum and Matas,
2005), MLESAC (Torr and Zisserman, 2000), MSAC (Torr and Murray, 1997), NAPSAC
(Myatt et al., 2002), LO-RANSAC (Chum et al., 2003). For setting the parameters, we fixed
thresholds of the estimators with T = 0.05 (or 5cm),wt = 0.1, sr = 3 (cm). T is a distance
threshold to set a data point to be inlier or outlier. sr is the radius of a sphere when using
NAPSAC algorithm. For the fair evaluations, T is set equally for all seven fitting methods.

The proposed method is warped by C++ programs using a PCL 1.7 library on a PC with
Core i5 processor and 8G RAM. The program runs sequentially as a single thread.
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Before choosing a good 

sample: w=0.03

Updated model thanks 

to new sample: w= 0.19

the best obtained 

Model: w= 0.41

Figure 9 An illustration of GCSAC’s at a kth iteration to estimate a coffee mug in the second
dataset. Left: the fitting result with a random MSS. Middle: the fitting result where the
random samples are updated due to applying the geometrical constraints. Right: the
current best model.

4.3 The evaluation results

The performances of each method on the synthesized datasets are reported in Table 2. As
reported, GCSAC obtains the highest accuracy and lowest computational time for whole
three synthesized datasets. As shown by Ew indexes of three types of primitive shapes,
even using same criteria as MLESAC, the proposed GCSAC obtains better estimated model
comparing with original MLESAC algorithm . AlthoughEw of the sphere dataset is still high
(Ew = 19.44%), this result is still better than the result of the compared methods. Among
the RANSAC-based variations, it is interesting that original RANSAC gives stable results
for three interested shapes. However, original RANSAC requires a high computational time.
The proposed GCSAC estimates the models slightly better than the original RANSAC, but
it is lower in term of the computational time. To debug how GCSAC work, Fig. 9 illustrates
affects of the updating a good sample in order to estimate a cylinder. By randomly drawing
MSS samples, a RANSAC-based algorithm can generate a failed candidate, as shown in Fig.
9(a). However, once these samples are updated by the searching good sample procedure, a
better model could be estimated (inlier rate of 0.19 refer to the current best model in Fig.
9(c)).

To intuitively visualize the performances of GSSAC and other six RANSAC-based
algorithms, Fig.10, Fig.11, and Fig.12 show the fitting results in synthesised datasets of
cylindrical, spherical, cone objects, respectively, which consist of only 15% inlier data.
These illustrations therefore confirm the proposed geometrical constraints are working well
with different primitive shapes.

For evaluating real datasets, the experimental results are reported in Table 3 for the
cylindrical objects. Table 4 reports fitting results for spherical and cone datasets. It is noticed
that these datasets consist of natural scenes which are taken from different viewpoints and
various types/sizes of the interested objects. For the results of cylindrical objects, all of the
evaluations show that GCSAC outperforms the MLESAC method. Especially, the estimated
inlier ratio (w), and total distance error (Sd) confirm that fitting results are fairly good with
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Table 2 The average evaluation results of synthesized datasets. The synthesized datasets were
repeated 50 times for statistically representative results.

Dataset/
Method

Measure RANSAC
(Fischler
and
Bolles,
1981)

PROSAC
(Chum
and
Matas,
2005)

MLESAC
(Torr
and
Zisserman,
2000)

MSAC
(Torr
and
Murray,
1997)

LOSAC
(Chum
et al.,
2003)

NAPSAC
(Myatt
et al.,
2002)

GCSAC

’first
cylinder’

Ew (%) 23.59 28.62 43.13 10.92 9.95 61.27 8.49
Sd 1528.71 1562.42 1568.81 1527.93 1536.47 3168.17 1495.33
tp(ms) 89.54 52.71 70.94 90.84 536.84 52.03 41.35
Ed(cm) 0.05 0.06 0.17 0.04 0.05 0.93 0.03
EA(deg.) 3.12 4.02 5.87 2.81 2.84 7.02 2.24
Er(%) 1.54 2.33 7.54 1.02 2.40 112.06 0.69

’first
sphere’

Ew(%) 23.01 31.53 85.65 33.43 23.63 57.76 19.44
Sd 3801.95 3803.62 3774.77 3804.27 3558.06 3904.22 3452.88
tp(ms) 10.68 23.45 1728.21 9.46 31.57 2.96 6.48
Ed(cm) 0.05 0.07 1.71 0.08 0.21 0.97 0.05
Er(%) 2.92 4.12 203.60 5.15 17.52 63.60 2.61

’first
cone’

Ew(%) 24.89 37.86 68.32 40.74 30.11 86.15 24.40
Sd 2361.79 2523.68 2383.01 2388.64 2298.03 13730.53 2223.14
tp(ms) 495.26 242.26 52525 227.57 1258.07 206.17 188.4
EA(deg.) 6.48 15.64 11.67 15.64 6.79 14.54 4.77
E_r(%) 20.47 17.65 429.44 17.31 20.22 54.44 17.21

Table 3 Experimental results on the ’second cylinder’ dataset. The experiments were repeated 20
times, then errors are averaged

Dataset/
Measure Method w

(%) Sd
tp

(ms)
Er

(%)
’second cylinder’
(coffee mug)

MLESAC 9.94 3269.77 110.28 9.93
GCSAC 13.83 2807.40 33.44 7.00

’second cylinder’
(food can)

MLESAC 19.05 1231.16 479.74 19.58
GCSAC 21.41 1015.38 119.46 13.48

’second cylinder’
(food cup)

MLESAC 15.04 1211.91 101.61 21.89
GCSAC 18.8 1035.19 14.43 17.87

’second cylinder’
(soda can)

MLESAC 13.54 1238.96 620.62 29.63
GCSAC 20.6 1004.27 16.25 27.7

GCSAC. Different from the evaluations on the synthesized datasets,Ew is not available for
the real datasets. The reason is that wgt, a true inlier ratio, is not able to measure in the
real scenes. As given by w indexes in Table 4, the results of ’second sphere’ dataset are
quite similar for all of the evaluation methods. We observe that the balls datasets have a
small noise ratio. However, theEr of GCSAC is slightly better than others. For the ’second
cone’ dataset, all of error indexes confirmed performances of the GCSAC versus others.
Specially, the computation time tp of GCSAC is significantly lower than others’ results.
Figure 13(a)-(c) illustrate the fitting results of cylindrical, spherical and cone objects using
GCSAC on the real datasets.
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RANSAC PROSAC MLESAC MSAC

LOSAC NAPSAC GCSAC

Figure 10 Illustrations of the fitting results on the synthesized datasets of cylinder using GCSAC
and other RANSAC variations. The datasets consists 45% inlier ratio. Red points are
inliers, blue points are outlier, the estimated cylinder is marked by green points.

RANSAC PROSAC MLESAC MSAC

LOSAC NAPSAC GCSAC

Figure 11 Illustrations of the fitting results on the synthesized datasets of sphere using GCSAC
and other RANSAC variations. The datasets consists 45% inlier ratio. Red points are
inliers, blue points are outlier, the estimated sphere is marked by green points.

5 Conclusions

In this paper, we proposed GCSAC that is a new RANSAC-based robust estimator for
fitting the primitive shapes from point clouds. The key idea of the proposed GCSAC was
the combination of ensuring consistency with the estimated model via a roughly inlier
ratio evaluation and geometrical constraints of the interested shapes. This strategy aimed
to select good samples for the model estimation. The proposed method was examined with
primitive shapes such as a cylinder, sphere and cone. The experimental datasets consisted
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Figure 12 Illustrations of the fitting results on the synthesized datasets of cone using GCSAC and
other RANSAC variations. The datasets consists 45% inlier ratio. Red points are inliers,
blue points are outlier, the estimated cone is marked by green points.

Table 4 The average evaluation results on the ’second sphere’, ’second cone’ datasets. The real
datasets were repeated 20 times for statistically representative results.

Dataset/
Method

Measure RANSAC
(Fischler
and
Bolles,
1981)

PROSAC
(Chum
and
Matas,
2005)

MLESAC
(Torr
and
Zisserman,
2000)

MSAC
(Torr
and
Murray,
1997)

LOSAC
(Chum
et al.,
2003)

NAPSAC
(Myatt
et al.,
2002)

GCSAC

’second
sphere’

w(%) 99.77 99.98 99.83 99.80 99.78 98.20 100.00
Sd 29.60 26.62 29.38 29.37 28.77 35.55 11.31
tp(ms) 3.44 3.43 4.17 2.97 7.82 4.11 2.93
Er(%) 30.56 26.55 30.36 30.38 31.05 33.72 14.08

’second
cone’

w(%) 79.52 71.89 75.45 71.89 80.21 38.79 82.27
Sd 126.56 156.40 147.00 143.00 96.37 1043.34 116.09
tp(ms) 10.94 7.42 13.05 9.65 96.37 25.39 7.14
EA(deg.) 38.11 40.35 35.62 25.39 29.42 52.64 23.74
Er(%) 77.52 77.09 74.84 75.10 71.66 76.06 68.84

of synthesized, real datasets. The results of the GCSAC algorithm were compared to
various RANSAC-based algorithms and they confirm that GCSAC worked well even the
point-clouds with low inlier ratio. In the future, we continue to validate GCSAC on other
geometrical structures and evaluate the proposed method with the real scenario for detecting
multiple objects.
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