
3D Object Finding Using Geometrical Constraints
on Depth Images

Van-Hung Le1,2, Hai Vu2, Thuy Thi Nguyen3, Thi-Lan Le2, Thi-Thanh-Hai Tran2,
Michiel Vlaminck4, Wilfried Philips4 and Peter Veelaert4

1Faculty of Information Technology, College of Statistical, Vietnam, hunglv@gso.gov.vn
2International Research Institute MICA, HUST - CNRS/UMI-2954 - GRENOBLE INP, Vietnam

3Faculty of Information Technology, VietNam National University Agriculture, Vietnam
4Ghent University/iMinds - Image Processing and Interpretation, Belgium

Abstract—Finding an object in a 3D scene is an important
problem in the robotics, especially in assistive systems for visually
impaired people. In most systems, the first and most important
step is how to detect an object in a complex environment. In
this paper, we propose a method for finding an object using
geometrical constraints on depth images from a Kinect. The main
advantage of the approach is it is invariant to lighting condition,
color and texture of the objects. Our approach does not require
a training phase, therefore it can reduce the time of preparing
data and learning model. The objects of interest have a simple
geometrical structure such as coffee mugs, bowls, boxes and are
on a table. Overall, our approach is faster and more accurate
than methods using 2D features on depth images for training an
object model.

Keywords—3D object detection, depth data, Kinect, Geometrical
constraint

I. INTRODUCTION

Finding an object is a fundamental problem in the field of scene
understanding. It is applied broadly in robotics and supporting
systems for visually impaired people. There are three main
steps for the object finding problem: detecting, classifying and
localizing objects in the image. The problem has been widely
investigated in both 2D and 3D spaces. However, the real
world is hard to be represented in 2D space, whereas detecting
objects in 3D space has many challenges such as matching and
learning visual objects. The problem depends on object pose,
camera viewpoint, partial occlusions, etc. Since its release, the
Kinect [1] has become popular and as results it has been the
subject in many researches. The device produces both color
and depth information and makes it, hence possible to model
the environment in a more realistic way. Nevertheless, each
object has its own unique shape in 3D space. This shape is at
any time only partially visible in the point cloud. The reasoning
is therefore performed on some surfaces of the object, each
surface containing a set of points. As a result, it is essential to
use the geometrical structure of the objects for our problem.
Currently, there are two main approaches for 3D object finding
including appearance-based and geometry-based [2]. The first
approach is based on training feature points of the objects
of interest [3], [4], [5]. This approach needs a lot of time to
prepare the data for learning the object model and to perform
the training. The second approach exploits the geometrical
structure of the objects [6]. Some geometrical constraints can
be used for certain types of objects in the scenes.

Fig. 1. Cup detection in a particular scene. It illustrates the simplest case.
On the table there is only one object, being the cup. This detection is the first
step in the process of finding objects in 3D space (preceding classification
and localization).

Visually impaired people have a lot of difficulties in daily
activities especially in finding and grabbing the object of
interest in living environment. With the advance of imaging
device such as kinect, developing a reliable system for assisting
visual impaired people becomes possible.
In this paper, we propose a new approach for finding objects of
interest in a complex scene in order to build an assistive system
for visually impaired people. We aim at detection of objects of
interest based on a query of impaired person, wherein, the 3D
object coordinates of the object are on a table. The result can be
emitted to a speaker to notify the impaired person about object
localization and number of object on the table. The approach is
based on geometry using data from one Kinect. Our approach
only deals with objects that have a simple geometrical structure
such as cups, bowls, boxes. The coffee mug, bowl or cup can
be represented by a cylinder while the box is represented by
a cuboid. Fig. 1 illustrates the result of the first step for cup
finding, i.e. cup detection.

II. RELATED WORK

Object detection is a fundamental problem in computer vision.
In this field, detection of geometrical primitives has been
studied for years in 2D as well as 3D. In 2D, object detection
is often based on lines, ellipses, circles [7] and arbitrary shapes
[8]. In 3D, it is often based on planes, cylinders, spheres [6].
Recently, the majority of the researches on 3D object detection
use appearance-based methods. Bo et al. [9], [10], [11] pre-
sented and improved a family of kernel descriptors (KDES).
This approach provides a principled framework for extracting
image features from pixel attributes such as gradient, color,
local binary patterns, etc. This approach is performed on 2D

2015 Seventh International Conference on Knowledge and Systems Engineering

978-1-4673-8013-3/15 $31.00 © 2015 IEEE

DOI 10.1109/KSE.2015.17

389

�������	�
��

�����������

����������

������	�

�	��

�����

������

������

�����������

�������������

�������	�
��

��������

����������

�����

����������

���������	����

�����

��������

���������

	��	����

������

�������	���

��	�����

����

��������	
�����

Fig. 2. The framework for finding an object in 3D

images (RGB, depth image) and 2D features such as SIFT,
SURF, LBP. Also in [11], Bo et al. have presented some
local features using depth kernel descriptors (gradient, kernel
PCA, size, spin and local binary pattern kernel descriptors) for
object recognition. It can capture different cues for recognition,
including size, shape and edges (depth discontinuities). The
authors used a Support Vector Machine (SVM) to train the
features (color histograms, SIFT, gradient, and local binary
pattern descriptors) on RGB-D images. It has a relatively
high accuracy in object recognition. More specifically, it has
an accuracy of about 80% on the dataset presented in [12].
However, this approach needs a lot of time for preparing data
and learning the object model, i.e. training a classifier given a
set of positive and negative examples [2].
Closer to the real world are the researches that represent the
image pixels into 3D points (point cloud) in the real world.
3D object detection is performed on point clouds and uses 3D
feature points for the object detection. All feature points are
calculated on the coordinates of each point in 3D space such as
PFH (Point Feature Histogram) [13], FPFH (Fast Point Feature
Histogram) [14], VFH (Viewpoint Feature Histogram)[15],
CVFH (Clustered Viewpoint Feature Histogram) [16], Intrinsic
Shape Signature (ISS) [17]. These features normally are based
on the distance and the normal vector of each point on the
surface of the object.

III. PROPOSED METHOD

A. Framework

Our work presented in this paper is based on a simple scenario:
a visually impaired person wearing a Kinect is going to a
kitchen to find and grab an object on a table. The objects have
a simple geometrical structure such as cup or box. We propose
a framework for finding a simple object based on point clouds
generated from depth images from a Kinect. The framework
is shown in Fig. 2.

B. Finding an Object

Step 1: Point cloud representation
In this step, the depth data is converted into 3D coordinates.
2D depth image D(x,y) is represented in 3D coordinates
in which (x,y) is spatial pixel (from RGB image) and z
data corresponds to depth. To represent the data, we use a
function of the PCL library (Point Cloud Library). We used a
transformation matrix to construct the point cloud data from a
depth image. The parameters are obtained from the calibration

�
�
�
�
�
�
�
�
	

�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

Fig. 3. The processing time of RANSAC and its variants; Our data is 11
point sets of point cloud, chosen from "MICA" dataset.

of the Kinect. Each point of the point cloud data has thus a
3D coordinate (x, y, z). Using the depth camera intrinsic [1],
each pixel (xd, yd) having depth value depth(xd, yd) on the
depth image can be projected into metric 3D space using the
following formula:

x =
z · (xd − cx)

fx
y =

z · (yd − cy)

fy
z = depth(xd, yd)

(1)
with fx, fy, cx and cy respectively the focal length and prin-
cipal point. Then in order to reduce the size of the data, we
present a point in point cloud by means of a voxel grid.
Step 2: Determining the table plane
In [1], the authors bases on the assumption: the table plane
is the largest in the scene. In this paper, we also use this
assumption. The table plane detection is based on a plane
extraction algorithm such as RANSAC, one of its variants, or
3D hough transform. In our approach, we perform a clustering
of the point cloud into so called "region point clouds" prior
to the actual extraction of the table plane. We use PROSAC
(Progressive Sampling and Consensus) [18] for fitting the
largest plane. We have evaluated different RANSAC variants
and chosen PROSAC because of its performance in accuracy
and in computational time. With the similar accuracy, the total
gain in processing time compared to RANSAC is 2.364s. The
details are presented in Fig. 3.

Step 3: Transforming point cloud data into new coordinate
system
Step 2 allows one to limit the search space to objects on the
table. In this step, in order to facilitate the computation and the
use of geometric constraints, we transformed from the Kinect
coordinate system (Okxkykzk - origin at Kinect center) into
a new coordinate system centered on the table (x,y on table
plane, z is the normal vector of table plane). It allows to filter
points in which we are not interested and lets us focus on
the data on top of the table. In addition, it allows us to use
geometrical constraints such as the height of the object. Using
the new coordinate system, the height of the object corresponds
to the value of the z-coordinate. The processing is as follows:
The rotation matrix are:

Rx(α) =

∣
∣
∣
∣
∣

1 0 0
0 cosα sinα
0 − sinα cosα

∣
∣
∣
∣
∣

(2)

Ry(β) =

∣
∣∣
∣
∣

cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

∣
∣∣
∣
∣

(3)

390

Rz(γ) =

∣
∣
∣
∣
∣

cos γ sin γ 0
− sin γ cos γ 0

0 0 1

∣
∣
∣
∣
∣

(4)

where α, β, γ are rotation in x, y, z axis
From Eq. 2, Eq.3 and Eq.4, we have the rotation matrix:

R = Rz(γ)Ry(β)Rx(α) (5)

In this paper, we only rotate in the x and y axes. Rotation in
y axis by an angle β, and in x axis by an angle α.

β = arcsin
a

√
(a2 + c2)

α = arcsin
b

√
(b2 + c2)

(6)

where (a,b,c) is the normal vector of table plane. The new
system coordinate after rotation is (0, 0, ZN). In real data, (x,y)
coordinate is very small about 10−7.
Now, we need perform a translation in z axis by a term

d = |ZN | . (7)

Step 4: Separating objects, plane, others
First we extract points which could belong to relevant objects
based on their distance to the table plane. Specifically, we
require zi > 0 (the points should be above the table plane)
and zi < T (the points should be close enough to the table).
Moreover, we assume that points with zi < t (very close
to the table) belong to the table and not the objects. Thus
m points in the scene are divided into two sets: the first
set containing n points belonging to the table plane and the
second one consisting of m − n points belonging to objects.
After the separation of planes and objects, we perform a
clustering of objects based on the Euclidean distance of
points. The distance between two point data regions is smaller
than Radius. We use Kd-Tree [19] for finding the K nearest
neighbors of a specific point or location. This algorithm for
clustering objects based on the relative position of points
is briefly presented in algorithm 1. In this algorithm,

Algorithm 1: Clustering point clouds

1 Region = Nothing; i = 0;
2 while length(ListPoint) �= 0 do
3 ProcedureSearchKNeastNeigh Radius,Region ;
4 if length(Region) ≥ ThresSizeRegion then
5 CreateRegion(Region);
6 ListPoint = ListPoint−Region;

7 i = i+ 1;
8 Return Region;

ThresSizeRegion is the minimum size of the data region.
It is the size of projection data on table plane. The threshold
may be used to remove the noisy data. ListPoint contains all
the points of the objects. ProcedureSearchKNeastNeigh
searches for the K nearest neighbors within a Radius and the
output of it is a set point belonging to a certain region.
Step 5: Detection of shape and labeling objects
In section I, we mentioned the presentation of interested 3D
objects by primitives in 3D space: a cup and a bowl are
represented by a cylinder while the box is represented by a
cuboid. The constraints for detecting a cylinder in a point
cloud are as follows: We fit a cylinder of radius r around the

���
�
��
�
���

�
	

���
�
��
�
�
�

�
�

��������

Fig. 4. Construction a cylinder from point A, point B, radius r

Fig. 5. Fitting the wrong ellipse. The red ellipse and blue circle use the least
squares algorithm fitting for projection data on the table.

Fig. 6. From left to right, the view of Kinect can see one side, two sides,
three sides of the box

line from the point A = (x1, y1, z1) to point B = (x2, y2, z2).
Fig. 4 illustrates the representation of a cylinder.
In this case, point B is defined as follows. A projection of
all object points are performed onto the table plane. Point
B = (x2, y2, z2) is the circle center and r is the radius of
the circle and point B is the location of objects on the table.
Since the origin of the coordinate system is centered on the
table plane the z axis represent the height of objects. The
point A = (x2, y2, z1) and z1 is the maximum z value of
the object point cloud. Normally, the projection of data of
a cup on the table plane is an ellipse. However, in case of
incomplete data (the density of data follows a conic shape),
we fit an ellipse through the existing points. This ellipse can
be too large and the according error function cost is large.
This is illustrated in Fig. 5. To 3D object coordinate on the
table plane, we fit a circle to the projection data in procedure
GetLocationCup(Center, r), GetLocationCube(Center, rb)
in algorithm 2. Through each object point cloud a cylinder
is fitted and dis values are distance from points to the round
axis of cylinder. In the real world, the height of the cup is
about h and the radius of the cup about rc and the threshold
tinlier% is the threshold to determine if a point is an inlier,
i.e. belongs to the cylinder model.
The constraints for detecting cuboid in point cloud are as
follows: Boxes are represented by their planar surfaces.
Normally, a box has 2 or 3 visible sides, but in worst case
situations only one sole side is visible. Let the biggest
dimensions of the box be bw and bh. Let �n1 be the normal
vector of the largest plane belonging to the box and �n2 the
surface normal of the second largest plane. For a cuboid we
should have �n1 × �n2 = �0. Fig. 6 illustrates the three view
cases of the box. The sides are fitted into a cuboid with size

391

Fig. 7. Setup of experiments for collecting dataset

(bw, bh, bw). bw is the width of cuboid, bh is the height of
cuboid. The evaluation of the inlier rate is similar to fitting a
cylinder, but this time a point belongs to the cuboid model if
it belongs to nearest the plane. In summary, fitting a cuboid
comes down to fitting points into two or three planes, and
verifying if these planes are perpendicular to each other. All
constraints used for 3D object finding in point cloud are
summarized in algorithm 2:

Algorithm 2: Using geometrical constraints for 3D object
finding
Input: Multi region point cloud
Output: Label cup or box, location of each object on the

table
1 i = 0; Label[i] = 0;
2 For each region point cloud
3 if HeighObject ≤ ThreHeObject then
4 if HeighObject ≤ ThreHeObjectCup then
5 ProcedureFitCylinder (AB-axis, rc, dis);
6 if ProcedureCheckCup(h, rc, dis, tinlier)==true

then
7 Label[i] = 1;
8 GetLocationCup(Center, r);

9 else
10 NumberP lane =

ProcedureFitPlane(region-point-cloud);
11 checkcuboid=ProcedureInlierCuboid(bw, bh, bw, tinlier);
12 if NumberP lane == 1 then
13 if size(plane) ≥

size(bw, bh) and checkcuboid == true then
14 Label[i] = 2;
15 GetLocationCube(Center, rb);

16 else
17 check = ProcedurePerpendicular2Plane(plane);
18 if size(plane) ≥ size(cw, ch) and check ==

true and checkcuboid == true then
19 Label[i] = 2;
20 GetLocationCube(Center, rb);

21 i = i+ 1
22 Return Label, LocationofObject

IV. EXPERIMENTAL RESULT AND DISCUSSION

A. Experiment

Fig. 7 illustrates the experimental setup we used to evaluate
the proposed approach. We suppose the impaired person to
determine the table localization in the room. The focuse is to

Fig. 8. Person move around the table

Fig. 9. Some scenes of experiment 1

Fig. 10. Some scenes of experiment 2

look for objects on the table. In our data set for experiments,
Kinect is mounted on ordinary people and moved near the
table. We performed two different experiments. The first ex-
periment was performed in a kitchen near the lab of MICA.
We refer to this as the “MICA” dataset. In this experiment, a
Kinect was attached to a person’s torso. As a result the Kinect
was about 60cm above the table plane. The distance between
the Kinect and a cup on the table was about 150cm. On the
table we had placed some coffee mugs, bowls (cups) and boxes
and other objects such as knives and a remote control of TV.
The cups all have a cylindrical structure and differed in size
(height from 5 to 10 cm, radius from 3 to 5 cm). The boxes
have a minimum size about 10×10cm. Our dataset contains 5
scenes (see Fig. 9), in which there are 910 depth images.
Both the depth and RGB sensors have been calibrated by
MICA platform. The distance between the objects is about
5 to 10cm. The table is put in the center of the room and
in other cases near the wall. In some sequences we placed
chairs next to the table. The Kinect captured about 3 frames
per second. Because Kinect usually collect data with speed 15
Hz - 20 frames per second, but in MICA platform that it takes
time for the calibration. The depth images have a resolution
of 640 × 480 pixels. The subject moves around the table in
Fig. 8. The second dataset for experiment was captured in
TELIN lab at UGhent. We refer to this as the “TELIN” dataset.
The experiment is similar to the first experiment. But in this
experiment, the table type is different and other objects such as
(bottle, clothing, computer screen, keyboard) are on the table.
The TELIN dataset has 9 scenes (see Fig. 10) and 705 depth
images. We used the following thresholds: The maximum
height of objects and boxes is ThreHeObject = 30cm; the

392

Scenes Frames Objects True detection False detection
Cups Boxes Cups Boxes Cups Boxes

1 230 960 460 893 428 75 53
2 202 606 404 576 384 152 32
3 136 408 272 378 252 65 94
4 177 531 354 502 335 98 46
5 166 498 332 471 314 81 32

Total 911 3003 1822 2820 1713 471 257

TABLE I. THE RESULT OF 3D OBJECT DETECTION FOR MICA
DATASET

1 2
0

20

40

60

80

100

Accuracy rate of cup(1), box(2)

R
ec

al
l−

pr
ec

is
io

n

Recall rate(%)
Precision rate (%)

Fig. 11. Precision-recall rate of 3D object detection on MICA dataset (table
I); precision rate of cup is 81.2%, box is 82.4 %

maximum height of cups is ThreHeObjectCup = 10cm; the
maximum of cups radius is rc = 5cm and the maximum width
of boxes is wb = 20cm; the size of the biggest visible box
plane is maximally size(bw, bh) = 40× 30cm and the size of
the second biggest visible plane is size(cw, ch) = 40× 10cm
and threshold of inlier rate is 80%.

B. Results

We define a true detection of an object as follows: the data
points of a cup or box are correctly labeled as such for all
points lying on it. A false detection of an object is defined as
follows: the region data is part of a cup or a box, but it is
not detected or the region data is not an object (cup, box), but
it remains to be discovered as a cup or box (false detection).
Regarding the location of the objects on the table, the accuracy
depends on all the sub processes: point cloud representation
(see step 1), point cloud transformation (see step 2), object data
projection onto table plane, circle fitting for each data region
(see step 5). In this study, we did not evaluate the accuracy
of the object location. The evaluation is based on the number
of objects that are correctly detected (true detection) and the
number of objects that are not detected or wrongly detected
(false detection). The results of experiment 1 are summarized
in table I and the average accuracy evaluated by Eq. 8 in
[20] is shown in Fig. 11.

Recall =
TP

TP + FN
Precision =

TP

TP + FP
(8)

The result of false detection is high due to several reasons:
in scene 2,4,5, the size of small boxes and cups is similar and
the noise of cups leads to false cup classification; the noise
of objects can lose one part of the object data; the noise of
the data can make objects stick together leading to a wrong
clustering; some scenes that have a table near the wall wrongly
cluster the table data and the wall data. A part of wall data
may be detected as a box. But the average accuracy (precision)
of 3D cup detection is 81.2% and 3D box detection is 82.4%.
Results of experiment 2 are presented in Tab. II and the average
accuracy is illustrated in Fig. 12. In Tab. II, the false detection,
often due to wrongly clustering table and chairs or a part of
the printer and the average accuracy (precision) of 3D cup
detection is 80.15%, 3D box detection is 67.31 %.

Scenes Frames Objects True detection False detection
Cups Boxes Cups Boxes Cups Boxes

1 96 192 192 178 180 0 25
2 81 162 81 132 67 32 43
3 129 258 0 256 0 9 21
4 96 192 0 181 0 8 19
5 46 0 0 0 0 4 7
6 49 49 45 0 0 8 5
7 75 0 150 0 150 0 15
8 96 0 96 0 91 17 14
9 36 0 0 0 0 1 12

Total 704 853 564 747 488 79 161

TABLE II. THE RESULT OF 3D OBJECT FINDING IN TELIN DATASET

1 2
0

20

40

60

80

100

Accuracy rate of cup(1), box(2)

R
ec

al
l−

pr
ec

is
io

n

Recall rate(%)
Precision rate (%)

Fig. 12. Precision-recall rate of 3D object detection in TELIN dataset (table
II); precision rate of cup is 80.15%, box is 67.31 %

Scenes Frames Objects True detector False detector
Cups Boxes Cups Boxes Cups Boxes

1 888 2664 0 2314 0 342 0
2 834 1668 834 1452 756 135 142
3 861 2583 0 2350 0 417 0
4 868 2604 868 2318 783 384 137
5 1128 1926 1028 1628 946 276 136
6 1048 2984 0 2634 0 579 0
7 943 1626 903 1492 871 294 200
8 925 763 0 704 0 98 0
9 732 612 732 552 703 84 117

10 716 1432 0 1393 0 173 0
11 640 0 640 0 589 13 86
12 723 723 0 685 0 100 8
13 462 724 362 637 327 151 84
14 659 1259 0 1191 0 186 32

Total 11427 21568 5367 19350 4975 3232 942

TABLE III. THE RESULT OF 3D OBJECT FINDING IN RGB-D SCENES

DATASET V.2 [12]

To demonstrate that the results of our approach are better,
we evaluated and compared our approach using the RGB-
D Scenes Dataset v.2 [12]. This dataset contains visual and
depth images of 300 physically distinct objects taken from
multiple views. The objects are commonly found in indoor
environments. Interested objects are on the table such as a
cup, a box, a hat, etc. The dataset is collected using a sensing
device consisting of a prototype RGB-D camera, Prime-Sense
and a firewire camera from Point Grey Research. The cameras
collect both RGB and depth images and the resolution of the
frames is 640x480 pixels. The two cameras are calibrated using
the Camera Calibration Toolbox for Matlab [21]. This dataset
has 14 scenes.
In the experiments, we have converted the video of each scene
to individual frames and only evaluated the detection of cups
and boxes. In some scenes, the table plane is not the largest
plane in the scene. Since we rely on this, we could not use
these frames in our evaluation. We evaluated our method using
this dataset the same way as we did in experiment 1. We have
grouped the coffee mug and bowl into the same class of cup.
The results are presented in Tab. III and the average accuracy
is shown in Fig. 13. In [12], the authors used a linear support
vector machine (SVM) for training feature image from both

393

1 2
0

20

40

60

80

100

Accuracy rate of cup(1), box(2)

R
ec

al
l−

pr
ec

is
io

n

Recall rate(%)
Precision rate (%)

Fig. 13. Precision-Recall of object classification in RGB-D Scenes Dataset
v.2 [12]; The average accuracy (precision) of 3D cup detection is 78.02%, 3D
box detection is 78.86%

Approach Average accuracy (precision)
Baseline 74.9%

Our approach 78.44%

TABLE IV. THE AVERAGE ACCURACY ON RGB-D SCENES DATASET

V.2 [12] OF OUR APPROACH AND BASELINE APPROACH [12], [23]

Fig. 14. Result of finding cup and box in the scene

RGB and depth image. The feature is a variant of histogram
of oriented gradients (HOG). Object classification is based on
the standard sliding window approach (Deformable Part Mode-
DPM [22]). In [12], [23] (baseline approach) are evaluated
object classification by the approach [22] on depth images of
RGB-D Scenes Dataset v.2 [12]. The average accuracy was
compared with our approach in Tab. IV.
Our system is implemented in the C++ language using the
combination of PCL 1.7 and OpenCV 2.4.8. Out method has
been tested on PC with Core i3 processor - RAM 4G. The
computational time is 1 scene per second whereas in [12]
dataset, the implementation takes approximately 10 seconds to
run the four object detectors to label each scene. Our approach
is faster and more accurate than the baseline approach. Fig. 14
illustrates the result of finding cup and a box in the scene.

V. CONCLUSION

In this paper, we have presented a new approach for 3D object
finding using depth images generated from a Kinect sensor.
The proposed method uses some geometrical constraints of
the scene and the objects. The approach is different from the
appearance-based approach because it does not rely on the
learnt model. The obtained experimental results show that by
using some geometrical constraints we can achieve a higher
accuracy than appearance-based training of an object model to
detect objects of interest.

ACKNOWLEDGEMENT

This research is funded by Vietnam National Foundation
for Science and Technology Development (NAFOSTED)
under grant number FWO.102.2013.08 and VLIR project
ZEIN2012RIP19.

REFERENCES

[1] Jeff Kramer, Nicolas Burrus, Florian Echtler, Herrera C. Daniel, and
Matt Parker. Hacking the Kinect. Apress, 2012.

[2] Sherif Barakat Khaled Alhamzi, M. E. 3D Object Recognition Based
on Image Features: A Survey. International Journal of Computer and
Information Technology, Volume 03 – Issue 03:pp651–660, 2014.

[3] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Detection-based
object labeling in 3D scenes. 2012 IEEE International Conference on
Robotics and Automation, pages 1330–1337, ISSN :1050–4729, May
2012.

[4] Shuran Song. Sliding Shapes for 3D Object Detection in Depth Images.
ECCV2014, pp 634-651, Volume 8694, 2014.

[5] J. Rusu, R.B. ; Willow Garage; Bradski, G. ; Thibaux, R. ; Hsu.
Semantic 3D Object Maps for Everyday Manipulation in Human Living
Environments. IROS, 24(4):345–348, August 2010.

[6] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for Point-
Cloud Shape Detection. Computer Graphics Forum, 26(2):214–226,
June 2007.

[7] R. O. Duda and P. E. Hart. Use of the Hough Transformation to Detect
Lines and Curves in Pictures. Comm. ACM, Vol. 15, pp. 11-15(January,
1972), 1972.

[8] D.H. Ballard. Generalizing the Hough Transform to Find Arbitrary
Shapes. CVGIP 13, 111–122, 1981.

[9] Xiaofeng Ren Bo Liefeng and Dieter Fox. Kernel Descriptors for
Visual Recognition. NIPS. Vol. 1. No. 2., 2010.

[10] Xiaofeng Ren Dieter Fox. Liefeng Bo, Kevin Lai. Object Recognition
with Hierarchical Kernel Descriptors. CVPR ,Robotic Res. 33(4): 581-
599, 2011.

[11] Xiaofeng Ren Dieter Fox. Liefeng Bo, Kevin Lai. Depth kernel
descriptors for object recognition. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2011.

[12] X. Ren K. Lai, L. Bo and D. Fox. A Large-Scale Hierarchical Multi-
View RGB-D Object Dataset. ICRA,DOI:10.1109/ICRA.2011.5980382,
2011.

[13] Zoltan Csaba. Blodow Nico. Rusu Radu Bogdan, Marton and
Michael Beetz. Learning Informative Point Classes for the Ac-
quisition of Object Model Maps. ICARCV, pages pp643 – 650,
DOI:10.1109/ICARCV.2008.4795593, 2008.

[14] Michael Beetz Radu Bogdan Rusu, Nico Blodow. Fast Point Feature
Histograms (FPFH) for 3D Registration. ICRA), pages pp3212 – 3217,
DOI: 10.1109/ROBOT.2009.5152473, 2009.

[15] Romain Thibaux John Hsu Willow Garage Radu Bogdan Rusu,
Gary Bradski. Fast 3D Recognition and Pose Using the
Viewpoint Feature Histogram. IROS), pages pp2155 – 2162,
DOI:10.1109/IROS.2010.5651280, 2010.

[16] Vienna Austria ; Vincze M. ; Blodow N. ; Gossow D. Aldoma, A.
; ACIN Tech. Univ. Wien. CAD-model recognition and 6DOF pose
estimation using 3D cues . ICCV Workshops, pages pp585 – 592,
DOI:10.1109/ICCVW.2011.6130296, 2011.

[17] Stefano Luigi Di Tombari Federico. Hough Voting for 3D Object
Recognition under Occlusion and Clutter . IPSJ Transactions on
Computer Vision and Applications 4(0), 20-29, 2012, 2012.

[18] Czech Tech. Univ. Prague Czech Republic ; Matas J. Chum, O. ; Dept.
of Cybern. Matching with PROSAC - progressive sample consensus .
CVPR, pages pp689 – 696, Volume:1, 2005.

[19] Sajid Hussain and Hå kan Grahn. Fast kd- Tree Construction for 3D-
Rendering Algorithms Like Ray Tracing. ISVC, pages 681–690, Volume
4842, 2007.

[20] Mark Goadrich Jesse Davis. The Relationship Between Precision-Recall
and ROC Curves. the 23rd International Confer ence on Machine
Learning, pages pp 233–240, ISBN:1–59593–383–2, 2006.

[21] Jean-Yves Bougu. Camera calibration toolbox for matlab.

[22] D. McAllester P. Felzenszwalb and D. Ramanan. A discriminatively
trained, multiscale, deformable part model. In Proc. of CVPR, pages
pp 1 – 8, DOI: 10.1109/CVPR.2008.4587597, 2008.

[23] Marcus Rohrbach Wandi Susanto and Bernt Schiele. 3D Object
Detection with Multiple Kinects. ECCV workshop, pages pp 93–102,
Volume 7584, 2012.

394

