

Multimodal Indoor Localization using Heterogeneous Technologies

DAO Trung-Kien CASTELLI Eric NGUYEN Hung Long NGUYEN Dinh Van

MICA International Research Institute Multimedia, Information, Communication & Applications UMI 2954

Hanoi University of Science and Technology 1 Dai Co Viet - Hanoi - Vietnam

Outline

Introduction

Heterogeneous Localization Technologies

Combination Approach

- Experiment Results
- Conclusion

Location based services

- Information customization based on user location
- Navigation guide
- Location-based advertising
- Security surveillance, alert, notification, warning,...

Indoor localization

- GPS generally works only outdoor → search for indoor localization schemes
- Many approaches proposed for indoor localization: cellular networks, infrared, ultrasonic, computer vision, RFID...
 - All suffer either from the limited accuracy, range, lacking of the infrastructure, or high deployment price

Combination of multiple technologies to overcome the limitation of individual ones

Outline

Introduction

Heterogeneous Localization Technologies

Combination Approach

- Experiment Results
- Conclusion

GPS, GALILEO

- Principle:
 - TOA \rightarrow distance to satellites
 - Least square solution
- Accuracy: 30m
- Advantage: global

Problems:

- Obstruction \rightarrow only outdoor
- Multipath propagation
- Signals weakened through atmosphere, walls, trees

RFID

Main approaches:

- Fixed readers, mobile tags
- Fixed tags, mobile readers

Accuracy: 1m

Problems:

- Proximity localization
- Scalability

WiFi signals

Two main approaches:

- Geometrical calculation: angulation, lateration,...
- Fingerprinting
- Accuracy: 5m
- Problems:
 - Complex propagation characteristics (low stability)

73 dB)

Pre-deployment efforts required

 (x_1, y_1)

Y

У1

y_k

Х

X1

 $(\mathbf{x}_k, \mathbf{y}_k)$

AP₁

ap₁₁

ap_{k1}

AP_n

ap_{1n}

ap_{kn}

Self localization mechanism

Problems

- Additional orientation sensor required
- Calibration needed
- Inapplicable to robots

Outline

Introduction

Heterogeneous Localization Technologies

Combination Approach

- Experiment Results
- Conclusion

System architecture

Aggregation approach

Probability based

For each point (x,y,z), calculate aggregation probability ρ_Σ

Maximizing

$$\rho_{\Sigma}(x, y, z) = \Omega_{i=1..n} \left(\rho_i(x, y, z) e^{-\lambda_i t}, R_i \right)$$

- Ω : probability aggregation function
- n: number of technologies
- ρ_i : probability of technology *i* (sum, product,...)
- *R_i*: reliability constant of technology *i*
- λ_i : time decay constant of technology *i*

Parameter estimation

- Parameters: λ_i, R_i
- Using genetic algorithms

Cost function: RMS of localization error

$$\Phi = \left(\frac{1}{N}\sum_{i=1}^{N}(\hat{x}_{i}-x_{i})^{2}+(\hat{y}_{i}-y_{i})^{2}+(\hat{z}_{i}-z_{i})^{2}\right)^{1/2}$$

- (x_0, y_0, z_0) : returned location by GPS
- σ : function of accuracy by 3-sigma rule

WiFi

Gaussian probability

$$\rho = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(r-r_0)^2}{2\sigma^2}}$$

- r₀: nominal distance from empirical propagation model
- σ : function of r_0

Distance (m)

Pedometer

Gaussian probability

- (x_0, y_0, z_0) : nominal user location
- σ: function of (step-length x step-count)
- d: Euclidean distance function

G

Historical & map information

Gaussian probability

$$\rho_i(x, y, z) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{d^2(x, y, z, x_0, y_0, z_0)}{2\sigma^2}} <$$

- (x_0, y_0, z_0) : previous user location
- σ : function of user speed by 3-sigma rule
- *d*: distance function with environment map awareness
 - ⋆ Shortest-path based
 - ⋆ Impossible location avoidance

G

Outline

Introduction

Heterogeneous Localization Technologies

Combination Approach

- Experiment Results
- Conclusion

Test scenario: user 1

Test scenario: user 2

Results

- WiFi only:
 - ◆ <u>video</u>
- WiFi + RFID + step count:
 - ♦ video
- WiFi + RFID + step count + historical & environment info:
 - ♦ video

Conclusion

- Probability based Multimodal localization approach
- System parameters tuned by using genetic algorithms with collected training data
- Highly extensible with heterogeneous technologies
- Significantly high accuracy of user localization is achieved

Perspectives

- Integration of other technologies: camera (fixed or mobile)
- Calculation speed

Thank you for your attention!

MICA 2013