

Cooperative Wireless Communications for Road Users

Fawzi Nashashibi Oyunchimeg Shagdar

IMARA-project team, INRIA

WUSPE 2013, Hanoi, Vietnam

INRIA... at a glance

National Research Institute in Informatics and Automation

<u>Director</u>: Michel Cosnard Staff : 2500

8 sites in France

INRIA

50% permanent INRIA staff 40% researchers vs. 60% ETA

180 Research Teams – lifetime : 12 years !

Activities:

Computer science Robotics Cognitive & digital sciences Communicant systems

IMARA : Informatique, Mathématiques, Automatique pour la Route Automatisée

mot

IMARA Key figures (today!)

Overview of the talk

- ITS applications
 - Telecommunications for automative driving
- Telecommunication standards for ITS
 - Europe, USA, and Japan: IEEE 802.11p-like systems
 - Can IEEE 802.11p support road safety applications?
- Cooperative ITS for road safety
 - Visible light communications and RF communications
 - Cooperation between communications and control
 - Cooperation between communications and perception

ITS Applications

- Road safety applications
- Traffic efficiency applications
- Infotainment applications

Ínría

Telecommunications for automative driving Vehicle negotiation

Ínría

Telecommunications for automative driving Platooning

ITS standards developing organizations (SDO)

- Regularity constraints (e.g., radio frequency) are different depending on the country/region.
- Standardization activities
 - USA: IEEE, SAE (Society of Automotive Engineers)
 - Japan: ITS Info-Communications Forum, **ARIB** (Association for radio industry and business)
 - Europe: CEN (European committee for standardization), **ETSI** (European telecommunications standards Institute)

Innia

Radio spectrum dedicated to ITS Communications

ITS standards in USA, Europe, and Japan

- Strong attention on safety applications
- Communications especially dedicated to V2V and V2I
 - IEEE 802.11p, ITS-G5, RC-005: Underling technology is IEEE 802.11

Can 802.11p support road safety?

- Cooperative Adaptive Cruise Control
 - Platooning
 - Vehicle merging

Inría

IEEE 802.11p modeling based on 2D Markov chain

• MAC (Medium Access Control): Differentiated channel access to different traffic classes (i.e., different types of messages)

smaller AIFS and smaller CW \rightarrow Higher-prioritized AC

CW differentiation

IEEE 802.11p Performance

Probability of successful transmission at access category *AC[i]*

$$P_{s}[AC_{i}] = (1 - \Box_{j})^{N_{j}} (1 - \Box_{j})^{N_{i}-1}$$

Ni: the number of transmitting nodes in the sensing range at ACi

 $\Box_i = q_i \Box_{s_i}$ Channel access probability for non-saturated condition

$$\tau_{si} = \left[1 + \frac{1 - (1 - p_{b,i+})^{d_i}}{W_i p_{b,i+} (1 - p_{b,i+})^{d_i}} + \frac{W_i - 1}{2(1 - p_k)} + \frac{(1 - (1 - p_{b,i+})^{d_i})(2 + 3(W_i - 2)p_k + (W_i - 2)^2 p_k^2)}{2W_i (1 - p_k) P_{b,i+} (1 - p_{b,i+})^{d_i}} \right]^{-1}$$

Channel access probability for saturated condition

$$p_{b,i+} = 1 - \frac{M_{i} - 1}{j = i+1} (1 - \Box_{j})^{N_{j}} \qquad p_{k} = 1 - (1 - \Box_{j})^{N_{i} - 1} \frac{M_{i} - 1}{j = 0, j \in i} (1 - \Box_{j})^{N_{j}}$$

IEEE 802.11p performance for platooning

 Vehicles exchange their information in every 0.1seconds using a single access category

A mechanisms for scalable communications is required!

IEEE 802.11p for merging control

- Main road vehicles periodically exchange motion state info using CAMs.
- A vehicle (RSU if exists) at the junction informs main road state (speed, position of individual vehicles) to the merging vehicle using DENMs.
- DENM has higher priority over CAM.
- Control
 - Based on DENM information, the merging vehicle controls its velocity for safe merging

- Communications quality: Packet delivery ratio, packet inter-arrival time, throughput..
- Control quality: Collision risk: 0 if a collision can be avoided even the relative speed is non-zero at the merging time.

Innia

IEEE 802.11p for merging control

High throughput, fixed message inter-arrival time are the major requirement. Due to road dynamics, V2I communication is preferred.

Visible Light Communications: Communications for highly dense networks

Cooperation between communications and control

Communications for highly dense road scenarios

- Traffic congestion
 - Increasing fuel consumption
 - Air and noise pollutions
- Automated vehicles platooning
 - Vehicle driver with reasonable high speed with only few meters of intervehicle gap
 - Reducing congestion (improves throughput)
 - Networking point of view: high dense

We look for a short-distance communications technology

Ínría_

Visible Light communications (VLC)

- No interference with radio
- Cheap and green
- Short distance line of sight communications

VLC Channel Modeling

VLC Channel Performance

Simulations results

- Inter-vehicle distance: 2m
- Maximum steering angle: 20°
- Maximum curvature: 0.73 m⁻¹

Simulations results

Cooperation between Control & Communication Ongoing research

- Communications and control modules exchange their information
- Adaptive communications based on information from control module
 - Switching between RF and VLC

Protection of vulnerable road users

Cooperation between communications and perception

Fatalities for Pedestrians and cyclists

http://ec.europa.eu/transport/road_safety/specialist/knowledge/pedestrians/crash _characteristics_where_and_how/data_considerations.htm

Pedestrian detection using local sensors (perception technology)

Local sensors cannot serve for NLOS scenarios or longer distance scenarios

Collabration between communications and perception technologies for pedestrian safety (ongoing research)

Using both communications and perception for pedestrian detection (ongoing research)

Summary

Road safety applications are the primary concern of the ITS communications systems

- IEEE 802.11p (like) communications systems have been standardized in major standardization organisations
- •Study of 802.11p for realistic applications
 - IEEE 802.11p does not serve in dense road scenarios
 - IEEE 802.11p's priority control does not necessary serve applications such as merging control
- •Cooperative Communications and control
 - VLC for platooning control
 - Usage of VLC and RF based on information from the control
- •Cooperative Communications and Perception
 - Pedestrian safety

Ingia_

Thank you

