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Abstract—This paper presents a geometry-based method for 3D
object fitting and localization in the context of building a grasping
aid service for visually impaired people using information from
Kinect sensor. Given two constraints of this working application,
(1) the interested object is on a table and (2) the geometrical form
of the object is known in advance based on the query of the user,
the proposed system consists of three steps: table plane detection,
object detection, and object fitting and localization. Our work
has three contributions. First, we propose to use organized point
cloud representation instead of just point cloud in order to
speedup the computational time and improve the accuracy of
table plane detection. Second, we employ MLESAC (Maximum
LikElihood SAmple Consensus) that can give better results for
object fitting. Third, we introduce a new method for evaluating
object localization task and make a quantitative evaluation of
object localization on our captured dataset.

I. INTRODUCTION

There exists a number of technological tools for assisting
visually impaired people [1]. They aim to solve two problems:
(1) understanding the current environment and the objects in
it, and (2) the self-localization problem. The work presented
in this paper belongs to the first category. Our objective is
to develop a grasping aid service for the visually impaired
people. One of major issues of blind people is to grasp objects
without pushing them over. To grasp an object, the following
information is needed: the size, the location of the object and a
simple description of its shape. For this, the working scenario
is described as follows: a visually impaired person wearing
a Kinect is going into a kitchen to find and grasp an object
on a table. Based on the query from the user, the system can
roughly have information about the geometrical structure of
the object. For example, a coffee cup usually has cylinder
form. Therefore, if the users wish to take a coffee cup, the
system should detect all possible cylindrical form objects and
give the information (i.e. the center, the radius and the height)
so that the users can make corresponding actions.
Recently, with the development of new and low-cost depth
sensors such as Microsoft Kinect, this kind of service can be
benefited from rich information provided by the depth sensors.
While most of current works in the literature follow the
appearance-based approach, our works focus on the geometry-
based because it can provide directly a simplified description

of the objects of interest and it can take advantage of proper
characteristic of the working application (objects are on the ta-
ble and the form of object is known). Moreover, the geometry-
based approach can be invariant to object appearance. This
means that the system can work with the objects having the
same geometrical form with different appearances.
In our previous work, we have proposed a framework for 3D
object detection and fitting [2]. The work focused on object
detection only. Moreover, it is time consuming and does not
provide information about object’s location.
In this paper, we extend and improve the previous work
with the following contributions. Firstly, we propose to use
the organized point cloud in order to speedup the compu-
tational time and to give a more accurate table plane and
object detection. Secondly, we employ MLESAC (Maximum
LikElihood SAmple Consensus) that gives better results of
object fitting. Finally, we present an 3D object localization
evaluation method and make a quantitative evaluation of object
localization on our captured dataset.

II. RELATED WORK

Current works in 3D object finding often focus to solve
related problems such as 3D object detection / localization and
recognition. Existing methods could be divided into two main
categories: appearance-based and geometry-based approaches.
The appearance-based approaches do not require explicit de-
scription about objects. They try to extract visual features
from images or depth map that usually represent implicitly
physical properties of the objects. In [3], the authors proposed
a viewpoint feature histogram describing 3D point cloud data
captured from stereocamera. In [4], the authors used Computer
Graphic (CG) CAD models from the Internet and render each
CG model from hundreds of viewpoints to obtain synthetic
depth maps of the object. For each rendering, a feature
vector consisting of point density feature, 3D shape feature,
3D normal features and Truncated Signed Distance Function
features are extracted and input to a SVM classifier. However,
one of the limitation of this method is how to evaluate on
real data from sensors. Drost et al. [5] proposed an approach
for 3D object detection using both intensity and depth data.
Scale and rotation invariant features are used to describe the
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objects silhouette and surface appearance. The objects position
is determined by matching scene and the model features via a
Hough-like local voting scheme. Jerzy et al. [6] has proposed
a method for object recognition and localization from 3D
point cloud data based on locally calculated feature vectors
(FVs). A global descriptor in the form of a set of spatially
distributed FVs is created for each reference model. In the
detection process, correlation of subsets of reference FVs with
FVs calculated in the scene is computed. Then, recognition is
based on comparison of the analyzed scene with reference
object library.
In geometry-based approaches, knowledge about shape struc-
ture of objects of interest should be provided as an explicit
model (mostly CAD-like model). Other attributes such as color
and texture are usually omitted. This approach is suitable for
objects with specific shapes. In [7], the authors propose a
method for 3D daily-life object localization using superquadric
(SQ) models on point cloud data acquired from Kinect sensor.
This method has been tested with Cube-Cylinder object on
very simple background that simplifies the object detection.
Quantitative evaluation has not been conducted. In [8], multi-
scale super-quadric fitting was used to estimate 3D geometric
shape and recover pose from unorganized point cloud data. A
low latency multiscale voxelization strategy is applied to do
the fitting. In our work, we consider kitchenware objects for
grasping service. Their shapes are already known, therefore
the geometry-based approach is more suitable.

III. 3D OBJECT DETECTION, FITTING AND LOCALIZATION

In this work, we are interested only in objects on the table.
Fig. 1 shows the flow chart of our proposed framework. We
first perform table plane detection. Then, we extract only the
points belonging to the objects on the table in object detection
step. Finally, we process object fitting and object localization
in order to determine object shape, size and location. In
the following section, we present in detail these steps. It is
important to note that our proposed method can work with
objects having different geometrical structure. However, in this
paper, we focus on only objects with cylinder form.

A. Table plane detection

The table plane detection consists of four steps: down sam-
pling, organized point cloud representation, plane segmen-
tation and plane classification (see Fig. 2). To achieve low
computation costs, we reduce data samples in the first step,
targeting at a lower sampling rate. However, the sampling rate
can not be arbitrarily low because it can significantly affect
the subsequent steps and lower the overall detection accuracy.
Then, the image data is converted into the organized point
cloud data. Each point of the point cloud data has thus a 3-D
coordinates (x, y, z) and color values (r, g, b). Using camera
intrinsics provided in Microsoft Kinect SDK, each pixel p(i, j)
in the RGB image has a color value C(rp, gp, bp) and a depth
value D(xp, yp) in the corresponding depth image, which can

RGB, Depth images

Table Plane Detection 

Object 
Location

Object  Detection

 3-D Object Fitting and Localization

Fig. 1. Proposed approach for 3D object detection, fitting and localizing in
object grabbing aid service for visually impaired people.

be projected into the metric 3-D space using the following Eq.
1:

x =
z(xp − cx)

fx
; y =

z(yp − cy)

fy
; z = D(xp, yp);

(1)
with (fx, fy), (cx, cy) being the focal length and principal
point respectively.
The organized point cloud data follows the structure of a
matrix as in the image. Each point has a 2-D index (i, j).
Here, (i, j) are the indices of the row and column of the matrix
respectively. They are limited by the size of the obtained image
by the sensors. For example, the image obtained from the Mi-
crosoft Kinect camera has 640x480 pixels, then i = 1, ..., row;
j = 1, ..., col; normally with (row, col) = (480, 640). Matrix
P presents the organized point cloud data of a scene based on
Eq. 2:

P =

⎡
⎢⎢⎢⎣

p1,1 p1,2 p1,3 p1,4 . . . p1,col

p2,1 p2,2 p2,3 p2,4 . . . p2,col

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
prow,1 prow,2 prow,3 prow,4 . . . prow,col

⎤
⎥⎥⎥⎦
(2)

where pi,j = (xi,j , yi,j , zi,j), (xi,j , yi,j , zi,j) are the values of
point pi,j in 3-D space.
For plane segmentation, RANSAC or one of its variants can
be used. However, this step requires highly accurate and
real-time plane extraction. Therefore, we employ the plane
segmentation method of [9] that combines distance and normal
vector information.
To select the table plane among the extracted planes, in the
plane classification step, we adopt the accelerometer data from
the Kinect camera. The main constraint is that the table should
stand on the floor. Therefore a table plane should be parallel
with the floor plane. The accelerometer data provides us the
normal vector of the ground (floor) plane and other planes, that
are parallel with the table planes. We eliminate planes which
do not meet this criteria. The remaining planes are considered
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Fig. 2. Table plane detection flow chart.

as table plane if they are high enough. After the table plane
was detected, we separate the data of the objects on the table
based on the table plane’s information.

B. 3D object fitting and localization

1) 3D object fitting: The outputs of the object detection are a
set of clusters of point cloud data. Each cluster corresponds to
an object. For each cluster, we can apply a fitting method in
order to estimate the object information. Currently, there are a
number of algorithms that can be used for estimating a model
from a set of points such as RANSAC [10], RANSAC variants
[11], Least Squares [12]. In [11], MLESAC algorithm has been
proved to be robust. Therefore, in this paper, we use MLESAC
for object fitting. In the RANSAC algorithm, if the threshold
T for determining inlier points is set too high then the robust
estimation result can be very poor. It finds the minimum of a
cost function C as Eq. 3.

C =
∑

p(e2i ) (3)

where p(e2i ) is the error of a sample ith with the estimated
model. p(e2) is determined as Eq. 4.

p(e2) =

{
0 e2 < T 2

constant e2 ≥ T 2
(4)

For fast convergence of error function, Torr et al. [13] proposed
the maximum likelihood sample consensus (MLESAC). Based
on the work of Torr et al., error is modeled as a mixture model
of Gaussian and is computed as Eq. 5.

C =
∑

p(e2i ) (5)

Therein, model error as mixture model is defined as

p(e) =

(
γ

(
1√
2πσ

)n

exp
(− e2

2σ2

)
+

(
1− γ

)
1

v

)
(6)

where

pinlier =

(
γ

(
1√
2πσ

)n

exp
(− e2

2σ2

))

poutlier =

((
1− γ

)
1

v

)
(7)

where σ is the standard deviation of the error; v is parameter
space within which outliers are expected to fall; γ is the
mixing parameter that it is estimated based on Expectation
Maximization (EM) from a set of indicator variables ηi with
(i = 1, ..., n). It is presented the detail in [13].
The minimized error −L is the negative log likelihood:

−L = −log

(
γ

(
1√
2πσ

)n

exp
(− e2

2σ2

)
+

(
1− γ

)
1

v

)
(8)

The function −L is used as a score for determining the error
function in MLESAC algorithm.

p(e2i ) =

{
−L e2 < T 2

T 2 e2 ≥ T 2
(9)

The MLESAC algorithm for estimating a model is summarized
as follows:
• randomly select a smallest possible subset of data pi for
creating a model mi

• test the data against model mi, expand hypothetical inliners
with all points satisfy a threshold T
• reestimate the model mi+1 with all points supporting the
model
• calculate the cost function -L (see Eq. 8) of the newest
model
• repeat and keep the model with lowest error

We employ MLESAC as a fitting method in two cases as
follows:
Case 1: MLESAC is applied on 3D point cloud data. In this
case, we estimate a cylinder.
Case 2: MLESAC is applied on the projected data on the table
plane. In this case, we estimate a circle corresponding to the
bottom part of the object.
The output of this step is object’s location (the coordinates
of object center) and the radius of the estimated cylinder or
circle.
2) 3D object localization: In the previous step, we can get
object position in Kinect coordinate system. However, in order
to give object location to the users and to evaluate object
localization methods, we have to convert this coordinate to a
predefined coordinate system. In order to do this, we design a
pattern similar to a chess board on the table. In our experiment,
the size of each cell of the pattern is 10cm because with that
size one can clearly see the chessboard on the table plane from
1.5m (the distance between Kinect and the table plane). On the
chessboard, we define a coordinate system as illustrated in Fig.
3a. To transform from Kinect coordinate system to chessboard
coordinate system, we have to find the transformation matrix
(rotation and translation matrix). In [14], Horn et al. stated that
the minimum number of 3-D points necessary for estimating
the rotation and translation parameters is 4. The more number
of points is selected, the lower error is. In this paper, we select
12 points. The error of transformation estimation is defined as

Fig. 3. (a) Predefined coordinate system (similar to a chess board) on the
table; (b) RGB image; (c) Point cloud of the scene.
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Eq. 10.

Err =
1

12

12∑
i=1

√
(xs − xt)2 + (zs − zt)2 (10)

where (xs, zs) is the source point; (xt, zt) is the target point.
After determining the transformation matrix, we convert all
point clouds from Kinect coordinate system to chessboard
coordinate system (see Fig. 3c).

IV. EXPERIMENT

We implement the proposed approach using C++ language and
two libraries ()PCL 1.7 and OpenCV 2.4.9) on a PC with Core
i5 processor and 8G RAM.

A. Table plane detection evaluation

In order to evaluate table plane detection, we capture images
of 10 scenes. Some examples of the captured scenes are shown
on Fig. 4. The total frames used for table plane detection
evaluation is 6686 frames. The results show that the table

Fig. 4. Examples of 10 scenes captured in our dataset.

TABLE I
THE AVERAGE RESULT OF DETECTED TABLE PLANE OF OUR METHOD

WITH DIFFERENT DOWN SAMPLING FACTORS.

Down sampling Average recall (%) Frame rate
Without downsampling 97.52 0.83

(3x3) 97.00 5
(5x5) 92.21 14
(7x7) 84.13 33

plane detection based on organized point clouds obtain not
only good result in term of recall but also computational
efficiency. It is important to note that our previous works
based on geometry constraints [2] gets 82.15% of recall
with 0.2 frames per second on this dataset. Using the down
sampling with size (3x3) (the depth value of a center pixel
in the depth image is the average depth value of the three
pixels neighboring), we can obtain results as good as without
down sampling (the average recalls are 97% and 97.52%
respectively). Our system can process 5 frames per second
while the later case can only process 0.83 frames per second.
If we increase the down sampling size, the frame rate will
increase while the recall will decrease. Therefore, for a trade
off, in this paper we use a size of (3x3) for down sampling
for table detection. Fig. 5 shows some examples of table plane
detection results. In our data set, there is only one table plane
in each scene.

Fig. 5. Top line is some results of table plane detection step. The detected
table planes are marked by the red color boundary; Bottom line is some results
of table plane detection in the point clouds, table plane is marked by green
color points (3-D contour), red color vector is the normal vector of the table
plane.

B. 3D object fitting and localization evaluation

1) Object localization measure: We evaluate the performance
of object localization method by two measures. The first mea-
sure is the error ε between the estimated center Ce(xe, ye, ze)
and the predefined object’s center location Cg(xg, yg, zg). This
is determined as Eq. 11.

ε =
√

(xg − xe)2 + (yg − ye)2 + (zg − ze)2 − Err (11)

where Err is defined in Eq. 10.
The second measure is the difference between the estimated
radius and the ground-truth radius.
2) Results: In our experiments, we use four cylinder cups
without handle. The cups are different in appearance, radius
and height. Images of these cups are shown in Fig. 6. We
perform 3 experiments that are presented in detail in the
following.

Fig. 6. Images of four cups (from left to right: Object 1, Object 2, Object 3,
Object 4) with cylinder form using in our experiments.

Experiment 1 (Exp1): In this experiment, Kinect is mounted
on a shelf. The distance between Kinect and table center is
about 1.5m. The height between Kinect and the table plane
is about 0.6m. Kinect is set at four positions around the table
(see Fig. 7a). At each capture time, we put only one object
on the table. The locations of the object on the chessboard
are (-2, 0, 2), (2, 0, 0), (0, 0, -2), (-2, 0, 2). Therein, each
cell is corresponding to a unit (10cm).
Experiment 2 (Exp2): In this experiments, the Kinect is
mounted a person’s chest and the person is moving around
the table (see Fig. 7b). The locations of all objects on the
chessboard is (-2, 0, 0).
Experiment 3 (Exp3): This experiment is similar to the first
one. However, for each capture time, we put more than one
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Fig. 7. Setup of (a) the experiment 1 and (b) the experiment 2.

object (two or three) at different locations. The minimum
distance between two objects is greater than 10cm.
The number of captured frames in experiment 1, 2 and 3 is
452, 600 and 125 respectively.

The average (ε) and standard deviation (θ) of error and its
distribution obtained in the experiment 1 and the experiment
2 for two cases (Case 1: cylinder estimation and Case 2: circle
estimation) are shown as Tab. II and Fig. 8 respectively. We
can see that the average error of both cases is small (2.1423
and 1.2683 cm). In both experiments, the second case always
gets better results in term of average value. However, it is
less stable than the first case. In term of radius estimation, we
compare the estimated radius in two cases with ground-truth
information (see Tab. III). The difference between the ground-
truth and the estimated radius in both cases is less than 0.5cm.
Once again, the second case shows that it can estimate better
the radius of the objects.

TABLE II
THE AVERAGE (ε) AND STANDARD DEVIATION (θ) OF ERROR OF THE

OBJECT CENTER ESTIMATION IN EXPERIMENT 1 AND EXPERIMENT 2.

Case Average (ε)(cm) Standard deviation (θ)
Exp 1 Exp 2 Exp 1 Exp 2

Case 1 2.1423 1.7283 0.1545 0.9746
Case 2 1.2683 1.2834 0.9727 1.2677

TABLE III
THE AVERAGE RADIUS OF THE ESTIMATED OBJECT (CM) FROM

EXPERIMENT 1 AND EXPERIMENT 2

Case Average radius (cm)
Object 1 Object 2 Object 3 Object 4

Experiment 1
Case 1 3.53 3.07 3.29 2.47
Case 2 3.67 3.22 3.42 2.95

Ground-truth 3.75 3.50 3.75 3.00
Experiment 2

Case 1 3.42 3.21 3.33 2.47
Case 2 3.35 3.45 3.6 2.69

Ground-truth 3.75 3.50 3.75 3.00

In the first two experiments, we put only one object on the
table. The main purpose of the third experiment is to evaluate
the proposed method in the scenario with more than one object
on the table. We capture 125 frames of 3 different scenes
containing two or three objects. The result of object detection
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Fig. 8. The distribution of error (in distance measure) (ε) of object center
estimation in two cases (Case 1: cylinder and Case 2: circle estimation)
obtained from experiment 1 (a), and the experiment 2 (b).

step is shown on Tab. IV. We can observe that, the proposed
method can detect objects with nearly 90% of recall. However,
in some cases, since some parts of the table plane are missed
therefore the objects are not well detected.

TABLE IV
THE RESULT OF OBJECT DETECTION STEP IN EXPERIMENT 3.

Scene Scene 1 Scene 2 Scene 3
#Frame 72 32 21

Number of object instances 144 64 63
Number of detected object instances 134 56 60

Recall ( %) 93.05 87.5 95.23

Concerning object fitting and localization step, we evaluate
object fitting and localization for each object on the table. The
average error distance (ε) and object’s radius of experiment
3 are shown on Tab. V, while the distribution of the error
for each object is illustrated on the Fig. 9. The average value
of the error distance (ε) for three objects is smaller than 2.5
cm. Concerning the computational time, the average time of

TABLE V
THE AVERAGE ERROR (σ) AND THE RADIUS OBTAINED FOR THREE

OBJECTS OF EXPERIMENT 3.

Object/Case Object 1 Object 2 Object 3
Average value of error distance (ε) (cm)

Case 1 1.8483 2.4427 2.5224
Case 2 1.7583 2.3379 2.3958

Average radius (cm)
Case 1 3.37 3.17 3.24
Case 2 3.48 3.46 3.52

Ground-truth 3.75 3.50 3.75

object fitting and localizing step are 0.06s/object for case 1
and 0.02s/object for case 2. The average processing time of
all steps are 0.36s/frame for case 1 and 0.42s/frame for case
2. Therefore, the case 2 can get better result in term of the
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Fig. 9. The distribution of error distance (ε) obtained for 3 objects in the
experiment 3; (a) Object 1; (b) Object 2; (c) Object 3.

average of errors and is faster than case 1. However the first
case is more stable.

V. CONCLUSION

In this paper, we have proposed a geometry-based method
for 3D object fitting and localization in the context of ob-
ject grasping aid service for visually impaired people. The
experimental results on table plane detection show that the
use of down sampling and organized point cloud allows to
perform table plane detection with 97% of recall and 5 frames
per second. This improves largely the performance of table
plane detection and then can improve the performance of the
overall system. Concerning object fitting and localization, the
proposed method can estimate the object’s center position with
the an error less than 2.5 cm and the radius with an error of
less than 0.5cm. In this paper, we just evaluated the proposed
method with objects having the cylinder form. Moreover, the
number of objects on a table is limited and the computational
time is still high. In the future, we will work with different
objects forms and try to reduce the computational time.
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