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Abstract—One of the biggest problems in building an aug-
mented reality system is registration in order to estimate camera
pose. This is usually done by manually setting the camera near
one of positions that the camera pose has been pre-computed.
Then the pose of the camera taking next frames will be computed
by using a tracking algorithm. The difficulty of this kind of
approach is that the tracker can get lost easily. In that case it
needs a human to interfere to get it on. This paper develops a fully
automatic system for tracking based on matching keypoints at
both steps: initialization and tracking. At initialization, the pose
of the camera is reliably estimated by matching the first image
against all reference images in database using SIFT-matching
algorithm [1]. Then we apply a fast algorithm, proposed in our
previous works [9] to match the current image with the previous
one to speed up the tracking. In case where the matching is not
satisfied, SIFT matching is applied to re-initialize the tracker.
The main contribution of this paper is having developed one
system of camera tracking, which is fully automatic and works
in near real-time, so suitable to real-time applications such as
augmented reality that we show the result in this paper.

I. INTRODUCTION

Augmented Reality (AR) is currently a very attractive
research and development topic because of its wide application
in advertising, navigation devices, military and emergency ser-
vices, prospecting, art, sightseeing, architecture, entertainment
and education, etc. AR applications require the alignment
of the real camera and the virtual camera used for virtual
scene rendering. To achieve this it is necessary to compute
the camera pose with respect to the scene for each image
(camera tracking problem). The problem of pose estimation
is defined as the problem of determining the relative position
between the camera and the object (the scene). The relative
position includes the position and orientation of the camera
w.r.t. the object, assuming that the intrinsic parameters of the
camera are a prior known.

Automatic, fast and reliable pose estimate is a difficult
problem. To estimate pose, many methods based on markers
have been proposed [6], [5], [4]. The use of markers increases
the robustness and reduces computational requirements. How-
ever, their use can be very complicated, as they require certain
maintenances.

Recently, some authors suggest to substitute markers by im-
ages [8], [3], [7]. This takes advantage of the fact that, for pose
estimation purpose, having markers is not always possible but

several training images may be available. Therefore, estimating
the camera pose of a given image can be done by matching
this image with each among training images and determining
the displacement between two corresponding cameras.

Although image matching is much studied in computer
vision field, it is not widely applied in Augmented Reality
(AR). The main reason is recognition algorithms in the lit-
erature are generally carefully designed to be invariant to
viewpoint, illumination changes, occlusion, scale changes, etc.
But more they are robust to such changes, more they take times
for computing and then less they are suitable for real-time
applications.

The work described in this paper is within the context of
AR in which the computational time is a critical element.
Therefore, our objective is to find a method that obtains a good
trade-off between the computational time and the precision of
the camera pose. In addition, we desire that the system can
work automatically, without human intervention.

Based on our previous work presented in [9] concerning
a fast method for matching keypoints, in this paper, we
propose to develop a fully automated camera tracking system,
which consists of two phases: initialization and tracking. At
initialization, the pose of the camera is reliably estimated
by matching the first image against all reference images in
database using SIFT-matching algorithm [1]. To speed up
the tracking, we are based on the fast keypoint matching
algorithm proposed in [9]. In case where the fast matching
is not satisfied, SIFT matching is applied to re-initialize the
tracker.

The main contribution of this paper is to propose a frame-
work for fully automated tracking in which we use a simple
but very efficient keypoint detector and a strategy to shift some
of computational burdens into training phase, which provide a
very satisfying results. In comparison with the previous works,
our (re)-initialisation is much more reliable thanks to SIFT
based keypoints matching. In addition, to compute camera
pose, we use 3D model information that allows our method
works with all types of scenes (2D/3D), not limited to planar
scene as in our previous work [9]. This framework is validated
in an augmented reality application.

This paper is organized as follows. We first present the
architecture of our tracking system (section II). Then, we



explain each component of the system in the sections III,
IV, V. Section VI describes how the pose of the camera
will be determined and tracked. Section VII describes how
the tracking is applied into augmented reality and show
experimental results.

II. FRAMEWORK OF CAMERA TRACKING SYSTEM

We propose a method for camera tracking using a set of
reference images as model. Our tracking system consists of 2
main flows that correspond to two phases of tracking system:
(re)-initialization and tracking (see figure 1).

At initialization, the first image will be matched with all
reference images (of the same scene) in the database and
the most similar one will be chosen. Note that the pose of
the camera capturing each reference image has been pre-
computed. As the first image may be very different from
reference images, we use SIFT based matching technique,
described in [1].

Once the matching ends, result (set of corresponding points)
obtained from matching the candidate image with the most
similar one will be used to determine the transformation be-
tween two corresponding cameras. The initial pose of camera
will be therefore simply inferred.

Fig. 1. General tracking system consist of 2 steps: Initialization, tracking
and re-initialization if necessary.

After the initialization, between two instants (2 frames) as
the camera doesn’t change so quick, the current image seems
to be quite similar to the previous one. We apply a fast method
to detect and match points [9]. If the matching result is not
reliable, a SIFT-matching algorithm will be applied to the
current image to re-initialize the tracker.

Both matching algorithms consists of 3 steps: keypoint
detection, keypoint description, and keypoint matching. They
are different at two first steps. In the following, we describe
these two first steps of each algorithm.

III. REVIEW OF SIFT DETECTOR

SIFT consists of 4 steps: (i) scale-space extrema of Lapla-
cian of Gaussian (LoG) extraction; (ii) keypoint localization;
(iii) canonical orientation assignment; (iv) keypoint descrip-
tion. First, local extrema of Laplacian in scale-space are

extracted. This is efficiently done by constructing a Gaussian
pyramid and detecting local extrema of difference of Gaussians
(DoG). By this way, keypoints are invariant to scale change.
These detected points will be next re-localized to improve pre-
cision in localization. Each point is then assigned a canonical
orientation (see the original paper of Lowe [1] and section
IV of this paper) such that following which the description
of the keypoint is invariant to rotation. The description of
the keypoints is finally designed by building an array of
histograms of gradient orientations. This description is more
compact and significantly discriminant than the signal image
itself.

We use SIFT to match images (the first image against each
reference image) at initial step, which allows us to be able
to determine initial pose with a quite different viewpoint at
the first time with respect to times taking reference images.
We implemented the SIFT detection and descriptor and ob-
tain result of matching which is quite similar to the binary
provided by Lowe[1]. The number of matches provided by
our algorithm is less than his but it allows to flexibly turn the
algorithm on (see figure 2 for example).

Fig. 2. Obtained matching result (a) by Lowe’s binary. (b) by our
implementation.

IV. FAST KEYPOINTS DETECTION AND DESCRIPTION

In our previous paper [9], we presented a simple but very
fast method for matching keypoints. During tracking, as the
camera does not change so quick, consecutive images seem to
be not too different each other. We propose to use this method
to obtain a good trade-off between the computational time and
the precision of image matching. The method consists of 4
steps: keypoints detection, canonical orientation assignment,
computation of eigenspace and local region description.

A. Keypoint detection

A variation of the Rosten’s method [11] has been proposed
in [9]. We detect keypoints at which the signal image changes
significantly. A point is not considered as a keypoint if its



energy is smaller than those of two opposite points in the
16-circle. The criterion is much more simpler than the one
proposed in [11] but gives the similar result of detection. Once
edge and region responses are eliminated, we reject remaining
multiple adjacent responses by keeping only points which have
extremal value of Laplacian (figure 3).

Fig. 3. Keypoint detection: (a) Points detected by Rosten detector; (b) Points
provided by our detector. We can see that our criterion is more simpler
but gives similar result of detection; (c) Remaining points after verifying
Laplacian criterion. We notice that lots of multiple responses have been
rejected

B. Canonical Orientation Assignment

By assigning a consistent orientation to each keypoint based
on local image properties, the keypoint descriptor can be
represented relative to this orientation and therefore achieve
invariance to image orientation.

Canonical orientation of a keypoint is defined as an orienta-
tion of gradient that have majority of points surrounding this
keypoint. To determine canonical orientation, a histogram of
gradient orientation is computed for all points within a region
of size 7×7 centered at the keypoint. The most significant peak
in the histogram corresponds to the canonical orientation of
local gradient.

Fig. 4. (a) Example of a histogram of gradient orientation computed
at the local region centered at the keypoint. The most significant peak in
the histogram corresponds to the canonical orientation of the keypoint. (b)
Keypoints detected from a building image. Each keypoint is assigned at least
one canonical orientation. The descriptor is built using the local patch (blue
square) around the keypoint, in the canonical orientation.

The assignment of orientation in this way costs lightly more
expensive than the one proposed in [8] where an orientation
which maximizes gradient magnitude is computed. However,
the obtained orientations are more stable to noise.

C. Computation of eigenspace

Considering a set of oriented keypoints, the next step is to
compute a descriptor for the local region around a keypoint
that is highly distinctive yet is as invariant as possible to
variations, such as change in illumination or 3D viewpoint.
Obviously, we can extract an intensity region around each

keypoint and match these using a correlation measure. How-
ever the intensity correlation is too sensitive to noise and the
search in such high dimensional space is very time consuming.
We use then gradient magnitude computed from normalized
image which allows an invariance to illumination changes.
Furthermore, to reduce high dimensions, Principal Component
Analysis (PCA) technique is considered.

D. Local region description

Once an eigenspace is built, we have a new basis
(v1,v2, ...,vK) to describe patches. Each patch now is rep-
resented by a K-elements vector Ω̂ which is considerably
smaller than the original vector Γ (eg. 20 against 39×39=1521
with patch size N = 41). Obviously, this representation is
more compact than the original one and thus allows a faster
search using nearest neighbours algorithm. In addition, it
tolerates intra-class variations and recognizes better the extra-
class variation.

V. MATCHING KEYPOINTS

Matching keypoints detected from 2 images is an essential
step before pose estimation. The keypoints matching algorithm
presented in this section will be applied to both phases:
initialization and tracking. To match points in two images,
keypoints are detected (section III, section IV-A) and de-
scribed (section III) or projected (section IV-D) onto pre-built
eigenspace (section IV-C). Basically, matching keypoints now
consists in searching for the nearest neighbor.

To efficiently match two sets of points in high dimension,
we use the technique for searching approximate nearest neigh-
bour proposed by Mount [16]. The idea is to organize feature
point set into a kd-tree or BBD1-tree structure such that an
approximate nearest neighbour of a query can be computed in
O(cd,εlog(n)) time, where d is the number of dimensions, n
is the number of points in the set.

Computing the approximate nearest neighbours allows to
achieve significantly faster running times although it can
undergo some matching errors. We overcome this error by
using second-closest neighbour criterion, as proposed in [1].

Apart from using of second-closest criterion, we add a
more robust criterion to reject outliers matching. Specifically,
once keypoints from two images have been matched, a robust
estimation of the multi-view geometry that links the two
images is computed using RANSAC [13].

VI. ROBUST ESTIMATION OF CAMERA POSE

Considering our augmented reality issue the goal is to
compute the pose of the camera w.r.t the world frame in order
to insert correctly virtual objects in the real scene observed by
the camera.

We assume that the pose rkMW , k = 1,M for each of the
M reference image and a 3D model of the scene are known.
Our goal is to compute tMW for the camera of each frame.

1Balanced Box Decomposition



We propose one solution based on a statistically robust non-
linear minimization algorithm [18]. Pose estimation can be
decomposed in an off-line and runtime processes.

At off-line process, from each reference Irk
, k = 1,M a set

of N keypoints have been extracted (xi, yi), i = 1, ...N . Since
pose and scene model are known, it is possible to compute for
keypoint its depth expressed in the reference camera frame.
This can be done by computing the intersection of a line
that pass through the camera optical axes and point (xi, yi)
and the model of the scene leading to a measure of rkZ.
Perspective equations allow then to compute rkXi = xrk

i Zi
and rkYi = yrk

i Zi. Let us note that only keypoints for which
the ray intersect the model are maintained in the database.
Knowing, the 3D point coordinates rkX = (rkXi,

rk Yi,
rk Zi)

in the reference camera frame, it is the possible to compute
their coordinate in the world frame WX = rkMW

−1rkX.
At run-time process, in initialization phase, let us consider

that current image It has been matched with one of the M
reference images (named Ir). Keypoint xi = (xi, yi) has been
extracted from the current image and matched with a keypoint
of reference image Ir leading to a 2D / 3D matching between
xi and WXi since the world coordinates of each keypoint in
the reference image have been computed during the off-line
process.

In the current version of our system we choose a non-
linear minimization method extended to consider a robust
estimation process based on M-estimators. The goal of this
process is then to minimize, for the parameters tMW (camera
pose parameters), the error ∆ between the set of observed data
s∗ and the data s of the same features computed by forward-
projection according to the current pose:

∆ =
N∑
i=1

(si − s∗i )))
2 =

N∑
i=1

(prξ(tMW ),W Xi)− s∗i )
2 (1)

where N is the number of matching keypoints between two
images. prξ(tMW ) is the projection model according to the
intrinsic parameters ξ and camera pose tMW . It is supposed
that ξ is available, to minimize this error, we proposed to
use control law presented in [18]. At the convergence of the
algorithm, we obtain the current pose of camera. The figure 5
gives an example of current pose computed from this method.

During tracking, as the camera does not change so quick,
we can match keypoints detected from two consecutive images
and the displacement tMt−1 between the camera from the time
t − 1 and t will be determined following the same principle
above. Once the camera displacement is determined, the
computing of current pose of camera tMW is straightforward:

tMW = tMt−1
t−1MW (2)

VII. EXPERIMENTAL RESULTS

In this section we first presents results directly related
to the matching issue (section 4 and 5). We then consider
the full system with two experiments: one in outdoor urban
environment and one for a “Magicbook” [12] like application.

Fig. 5. Pose of camera corresponding to the current frame is computed based
on the control law

Let us note that for all the sequences we used the same
eigenspace learnt using a large database.

A. Matching results

In this section we will focus our evaluation on computa-
tional time as our objective indicated at the beginning of this
paper aims at real-time application. To build eigenspace, we
use 10 images of different nature. Experiments show that the
set of reference images do not influence much the matching
result. Some parameters are experimentally chosen to obtain
a good trade-off between the precision of matching and the
computational time: patch size N = 17, number of the largest
eigenvalues used to build eigenspace K = 20, threshold for
second-closest ratio εr = 0.6, pixel precision for RANSAC
εp = 0.3.

In our previous works, we noticed that the algorithm is very
robust to occlusion and illumination change. In both cases,
it provides reliable and enough matches for pose estimation.
Table I gives information about computational time at each
step of matching algorithm. When two images are not too
different, the pose estimate works at 18Hz (384x288 image).
When these images are quite similar (consecutive frames in a
sequence), the speed can be improved up to 25Hz.

B. Application to outdoor augmented reality

To demonstrate the performance of our tracking system, we
apply it to an AR application in real 3D urban environment.
University Campus in Rennes is used as a test environment.
For each building in the campus, 3D model is available.
Coordinates of each corner in the model are expressed in a
world coordinate frame. Videos are taken by a camera with a



Operation Times (ms)
Interest Point Extraction 8ms
Interest Point Characterization 5ms
ANN Matching 11ms
RANSAC based outliers rejection 1ms

TABLE I
COMPUTATION TIME ON A CORE 2 DUO, 3GHZ, FOR 400 KEYPOINTS

DETECTED FROM CURRENT IMAGE, MATCHED AGAINST 350 POINTS OF
KEY-FRAME.

384x288 resolution. The lighting condition at the test moment
is very different from at the training one. The number of
keypoints in almost frames varies from 200 to 400. With these
parameters, the system performs at about 14Hz on a 2.6GHz
P4.

Unlike to AR system recently presented in [17] in which
the tracking system requires the user to start manually from
well-known position in the environment, our system initializes
automatically by matching the first images against all reference
images.

During tracking, when the number of matches is not enough
(at least 4 in theory, 8 in practice) to compute the deplacement
of the camera or when the matching is not reliable (eg. the
residual is bigger than a threshold), we consider the tracker
failed and restart it (meaning that the current image is matched
against all the reference image of the database).

Reference images (see Figure 6) are taken by a handheld
camera prior to the test sequence acquisition. Those camera
poses are pre-computed. For each reference image, we pre-
computed also keypoints and descriptors. So at run-time,
keypoint detection and description will be done only for the
candidate image ; this allows to save half time of computation.
All parameters used in matching algorithm remain the same
as in section VII-A.

Figures 6 show some results of matching and their use to
determine pose of the camera. Current images are on the first
row, reference ones are on the second row. Each match is
presented by a line connecting them from the current image
to the reference one. Each line color represents a plan index
on that lie couple of keypoints. On the figures, we overlaid
3D models of buildings present in the scene.

With the use of information about 3D models, keypoints
are correctly matched. A keypoint on one plane matches only
with a keypoint of the same physical point on this plane. The
matching algorithm starts to find corresponding keypoints in
current image for all keypoints in reference image lying on the
biggest plane. Then it finds corresponding keypoints among
remaining ones in current image for all keypoints in reference
image lying on the second biggest plane and so on.

Matching accuracy is evaluated regarding how correctly are
3D models of buildings overlaid on theirs images. We note
that in this experiment, we rotate the camera a lot. Many
times, the first or the second building is completly occluded
but the tracker still works thanks to the possibility of system to
flexibility and automatically switch to a suitable one between

two matching algorithms.

C. “Magicbook” like experiment

The goal of this experiment is to match each new page of
the book with the correct reference page in the database (all
the pages have been stored) and then to compute the pose of
the book. As can be seen on the images of the match results
(see Figure 7) the current is always correctly matched even
if the image is partly occluded when the page are turned. In
that case the displacement between the reference and current
image is computed as reported in section V.

VIII. CONCLUSION

The works presented in this paper follows our previous
works concerning only keypoints matching algorithm. This
paper presented a fully automated camera tracking system,
which uses like SIFT matching algorithm to initialize or re-
initialize the tracker and a fast matching algorithm to match
consecutive images [9]. This system overcomes a common
drawback of almost state of the art tracking techniques:
automatic initialize and re-initialize whenever the tracker get
lost. Without human intervention, this system works in near
realtime and provides satisfying result for pose estimation.

The implementation of the tracking system is plugable. We
can plug any other keypoints detector or descriptor in both
initialization and tracking steps. By this way, it provides pos-
sibility to improve each component of the system. In addition,
this system is not designed for a specialized application. It can
be applied into different realtime applications as surveillance
or visual servoing.

However, there exists some problems to be improved:
• First, we used SIFT technique to match images at initial

phase. This technique is shown to be robust to illumina-
tion or scale changes. However, in our experiment, when
illumination changes alot, descriptors of a same physical
point do not remain the same. There are also some
confusing matches which need to be rejected by adjusting
geometrical verification. We are thinking about using not
strictly optical information but also others sources (eg.
inertial sensor) to improve pose estimatation accuracy.

• Second, total residual computed after matching could be
a measure to detect matching failure. However, it is not
always a reliable measure. Actually, the tracker is re-
initilized whenever the number of matches is not enough
to compute camera pose or it is re-initialized after certain
number of frames to avoid drifting error. To optimize the
tracking time, the problem of detecting matching failure
needs to be considered.
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