R e s T =
T4

KY YEU HOI NGHI KHOA HQOC CONG NGHE
QUOC GIA LAN THU VII

ISBN: 978-604-913-300-8

Proc\eedlngs of the\7 3 :.Na:tmnalf ;Cm‘nfel enggj‘*’

on Fundamental and: Applg”é"ghfﬁformatlon o
Technology/lleseareh*‘(ﬁFAIR'7) g
P ‘\\** ]
o / -
A
NHA XUAT BAN KHOA HQC TU NHIEN VA CONGNGHE
\ \\; ".\\“\:\ |

Scanned by CamScanner



n
t2

i
(V%]

1)
L]}

56

60

61

65

Scanned by CamScanner

R . AUSSI
NGHIEN CUU PHUONG PHAP PEM XE O TO SU DUNG MO HINH HON HOP G AR

VA LUONG QUANG HQC

Ngé Quéc Tao, Nguyén Vin Can, Huynh Vin Huy

NGHIEN CUU QUA TRINH TIEN HOA ONTOLOGY TRON
Husnh Nhirt Phét, Hoang Hiru Hanh, Phan Cong Vinh

NGHIEN CUU XAY DUNG MO-BUN SINH TU DONG MA NGgOSHglgxggg igggg
NGON NGU' C CAP NHAT GIA TANG, PONG BO CAC KHUN

POSTGRESQL
Neuyén Trdn Quéc Vinh, Trin Trong Nhin

NHAN DANG PHUONG NGU TIENG VIET SUDUNG MO HiNH GAUSS HON HOP

Pham Neoc Humg, Trinh Van Loan, Nguyén Hong Quang, Pham Qudc Hung

NHAN DIEN TU LAY VA TU GHEP DANG LAP CHO BAI TOAN TACH TU TIENG VIET

G HE THONG DA TAC NHAN

Trin Ngoc Anh, Dio ThanhTinh, Nguyén Phuong Théi

NOISE SUPPRESSION IN DEPTH MAP FOR IMPROVED BACKGROUND SEGMENTATION
Van-Toi Nguyen, Hai Vu, Thi-Thanh-Hai Tran, Thi-Lan Le

PHAT HIEN CHAY SOM DUA TREN KY THUAT XU LY ANH

Ha Pai Duong, Dao Thanh Tinh

PHAT HIEN HANH VI GAT PAU VA UNG DUNG TRONG BAI TOAN LAI XE NGU GAT
Lim Thanh Hién, D3 Ning Toin, Trin Vin Ling, Trin Hanh

PHAT HIEN LUAT CHUOI LIEN KET GIAO DICH TU €O SO DU LIEU THOI GIAN

Truong Dirc Phuong, D6 Vin Thinh

PHAT TRIEN CO CHE XU LY CUM TU TRUY VAN TIENG VIET CHO HE THONG
TRUY VAN THONG TIN TUYEN DUNG DUA TREN CAC PHUCONG PHAP TiINH TOAN
NGU NGHIA

Phan Thi Thé, Nguyén Tuin Ding

PHAT TRIEN THONG TIN NGON PIEU CHO HE THONG TONG HOP TIENG NOI DUA
TREN HMM DANH CHO CAC THONG BAO HANG KHONG

Trén Lam Quan, Dinh Anh Tudn, Phan Ding Hung, Vii Tét Thing

PHAT TRIEN THUAT TOAN THUY VAN MANG DUONG PHO BEN VONG DOl VGI PHEP
BIEN POI CO GIAN BAN PO

Pham Dirc Tho, Pang Vin Pirc

PHUONG PHAP DU PHONG BAO VE TiCH CUC PAM BAO DO TIN CAY CUA HE THONG
TINH TOAN ' ‘

Lé Quang Minh, L& Khanh Duong, Nguy&n Anh Khigém

PHUONG PHAP LOC THICH NGHI UGC LUGNG TRUNG BiNH PHUONG U Ki
{ ¢ ( ) ] TOI THIEU KiCH
CG BUGC CO BINH TRONG TACH TIENG TIM VA TIENG PHOI

Phung Trung Nghia, Nguyén Thanh Trung, Nguyén Thé Diing, Poan Thj Hién

PHUONG PHAP MOI PHAT HIEN VIRUS DUA TREN MO HINH ENTROPY CUC DAl
Pham Van Hudng, L& Ba Cuéng, L& Dirc Thuin, Lé Thi Héng Vén

TRUONG BE TONG CQC KHOAN NHO| DUA TREN LOGIC MO

Ngbé Hoang Huy, Neuyén Tri 8 3 Fies B e e :
Nguyén TugTrur?'g guyen Trinh Nguyén, Nguyén Thé Dang, Nguydn Dic Hai, D5 Xuan Thicu,

PHUONG PHAP PHAT HIEN SU' SUY GIAM VAN TOC CUA XUNG SIEU AM TRONG MOI

Xiv

418

428

440

465

472

488

496

518

524

530

537




Ky yéu Hpi nghi Qudc gia lan thir VII vé Nghién cieu co ban va iing dung Céng Nghé thong tin (FAIR); Thai Nguyén, ngay 20 — 21/6/2014

Improving localization precision of visual SLAM using Kalman filter

Quoc- Hung Nguyen', Hai Vu!, Thi Thanh - Hai Tran!, Quang - Hoan Nguyen?
! Research Institute MICA, HUST - CNRS/UMI 2954 - Grenoble INP- Hanoi University of Science and Technology
2Hung Yen University of Technology and Education

{quoc-hung.nguyen,hai.vu, thanh-hai.tran}@mica.edu.vn, quanghoanptit@yahoo.com.vn

ABSTRACT— This paper describes a Visual SLAM (Simultaneous Localization And Mapping) system developed on an intelligent
system. The proposed system aims to support navigation services for visually impaired people in indoor environments. Toward this
end, we utilize the Fast Appearance-Based Mapping (FAB-MAP) algorithm that is an appearance-based place recognition method.
Although FABMAP algorithm is reliable in the outdoor scenarios, it still needs further improvements in indoor environments where
contain repetitive structure scenes and sensory ambiguity. Therefore, two improvements are proposed. Firstly, we propose a scheme
to learn discriminative scenes from experimental environments. This is to build a robust visual dictionary associating FAB-MAP
algorithm. Secondly, we utilize a Kalman Filter to update position of the vehicle (like a mobile robot). The Kalman Filter keeps track
of an estimate of the uncertainty in the robots position and also the uncertainty in the recognized scene that has seen in the
environments. By this way, a feasible navigation on a mobile robot is up and run. We do not mean this is a perfect solution, what we
mean is that proposed system could serve more reliable navigation service to blind/visually impaired people in indoor environments.

Keywords — Visual Odometry, Place Recognition, FAB-MAP algorithms, Kalman Filter.

I. INTRODUCTION

Autonomous localization and navigation are extreme desirable services of peoples who suffer from visual
impairment problems. Most of commercial solutions are based on the Global Positioning System (GPS), WIFI,
LIDAR, Ultrasound, or fusion of them. iNavBelt uses ultrasonic sensors to procedure a 120-degree wide view
ahead of the user [19]. GuideCane has an ultrasonic sensor head mounted on a long handle [3] . The EyeRing
developed by MIT’s Media Lab., is a finger-won device that translates images into aural signals. Although such
kind of devices are useful to blind/visually impaired people in some environments. The major drawbacks are that
they only give limited kind of information, and required well-focused user control. Recent techniques in the
computer visions and robotics community offer substantial advantages to overcome those limitations. This paper
towards to these techniques by using visual sensors mounted on an intelligent system (like a mobile robot). The
proposed system aims to solve two problems: 1. Understanding the current environments. 2. Self-localization of robot.
Regarding the problem 1, a question is that “what does the world look like?”. This question involves in the building
map of the environments and robot’s trajectory. In contrast to this, self-localization service relates to estimating
a pose to a relative position on the created map. It is to answer the second question "Where am 17,

A visual SLAM replying on the visual appearance of distinct scenes is responsible for finding optimal solutions for
both above problems: building, maintaining a map of to the robot’s trajectory and estimating landmark positions. Recent
approaches like FAB-MAP aim at reaching a high recall rate at 100% precisions. FAB-MAP [4] is a probabilistic
appearance-based approach to place recognition. It builds on a visual vocabulary learned from SURF descriptors. A
Chow Liu tree is used to approximate the probability distribution over these visual words and the correlations between
them. This allows the system to robustly recognize known places despite visual ambiguity. FAB-Map 2.0 has been
applied to a 1000 km dataset and achieved a recall of 3.1% at 100% precision (14.3% at 90 % precision respectively).
Although FAB-MAP approaches are reliable recognition places in large-scale environments. For indoor environments,
repetitive structure and sensory ambiguity constitute severe challenges for any place recognition system. In our real
experiments in indoor environments, by setting threshold to reach a 100 % precisions, it is very difficult to obtain high
recall rate (~ 14% at 100% precisions). Consequently, this leads to preventing detecting true positives. In this work, we
argue a robust FAB-MAP that is reliable to recognize known places through autonomous operating in an intelligent
system. We focus on two improvements. We first clearly define the visual dictionary of the scenes. As context of indoor
environments, many scenes has repetitive structure, the visual dictionary needs including only representative scenes.
Secondly, we deploy a Kalman filter to update current position of the vehicle (mobile robot). This function thanks to
states of the vehicle (like velocity of the mobile robot, step-walks of the people).

For implementations, the proposed system has two phases. The first phase is an off-line process including two
main functions: build the robot’s trajectories and learning (indexing) places in the environment. We simultaneously
collect visual data for the off-line process by a s elf-designed imaging acquisition system. For building the trajectories
of the environment, we utilize a robust visual odometry proposed in [8]. This is interesting method because it is
successful to build trajectory using only one consumer-grade camera. In order to learn places in the environment, we
utilize so-called loop closure detections method [4], [14]. The main idea for learning the visited places is that loop
constraints can be found by evaluating visual similarity between the current observation and past images where are
captured in one (or several) trials. The second phase is an online process. An agent (such as vehicle, human) is required
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to mount/wear a mobile device camera. The current observation is matched to a place in the database which is learnt in
the off-line phase. We then using a Kalman filter to update the current position of the vehicle.

We evaluate results of the improvements through travels of a mobile robot moving along corridors of a large
building. The experimental results of the matching place on the created map are successful with 74% recall and 88%
precisions. This results are beyond the performance of the original FAB-MAP for indoor environments. The Kalman
filter help to update position of the mobile robot. Consequently, the guidance to the blind people through movement of
the mobile robot is feasible. The paper is organized as follows: In Section I, we present motivations and outline our
approaches. In Section II, we briefly survey related works. In Section III, we present our vision-based system for
autonomous map building and localization. We report the experimental results on real data in Section IV. Finally, we
conclude and give some ideas for future works.

II. RELATED WORKS

Developing localization and navigation assistance tools for visually impaired people have been received many
intention in the autonomous robotics community [ 5 ]. Most of them involve in finding out efficient solutions to the
positioning data that come from different sensory modalities such as GPS, laser, Radio Frequency Identification (RFID),
vision or the fusion of several of them. Loomis et al. in [12] surveyed efficiency of GPS-based navigation systems
supporting visually impaired people. The GPS-based systems share similar problems: low accuracy in urban-
environments (localization accuracy is limited to approximately 20 m), signal loss due to multi-path effect or line-of-
sight restrictions due to the presence of buildings or even foliage. Kulyukin et al. [10] proposed a system based on Radio
Frequency Identification (RFID) for aiding the navigation of visually impaired people in indoor environments. The
system requires the design of a dense network of location identifiers. Helal et al. [9] proposed a wireless pedestrian
navigation system. They integrated several signals such as voiced, wireless networks, Geographic Information System
(GIS) and GPS to provide the visually impaired people an optimized route.

Recent advanced techniques in computer vision offer substantial solutions with respect to localization and
navigation services in known or unknown environments. The vision-based approaches are safe navigation and provide
a very rich and valuable perception information of the environment. Alcantarilla [6] utilizes well-known techniques
such as Simultaneous Localization and Mapping (SLAM) and Structure from Motion (SfM) to create 3-D Map of an
indoor environment. He then utilizes means of visual descriptors (such as Gauge-Speeded up Robust Features, G-
SURF) to mark local co-ordinate on the constructed 3-D map. Instead of building a prior 3-D map, Lui et al. [11]
utilize a pre-captured reference sequence of the environment. Given a new query sequence, their system desires to
find the corresponding set of indices in the reference video. Many specific applications that also are based on vision
sensors are developed to support typical daily activities of the visually impaired people. For example, [2] develops an
application, names Locatelt, which supports blind people locate objects in the indoor environments. In [22],
ShelfScanner is a real-time grocery detection, that allows online detection of items on a shopping list.

Regarding to map building and localization services, visual SLAM has been proven to be quite successful in
navigation for autonomous robotic systems [1]. By means of visual SLAM techniques, some wearable applications are
proposed. Pradeep et al. [17] presents a head-mounted, stereo-vision for detecting obstacles in the path and warn
subjects about their presence. They incorporate visual odometry and feature based metric-topological SLAM. Murali et
al. in [13] estimate the users location relative to the crosswalks in the current traffic intersection. They develop a vision-
based smart-phone system for providing guidance to blind and visually impaired travelers at traffic intersections. The
system of Murali et al. in [13] requires supplemental images from Google Map services, therefore it is suitable with
travels at outdoor environments only. With SLAM-based approaches, it is possible to build a map at the same time the
location of the people who wears cameras standing/moving in the environment. However, the complexity of the map
building task varies in function of environment size. In some case, a map can be acquired from visual sensor, but in other
cases, the map is such that it must be constructed from other sensor modalities such as GPS, WIFI [4]. Furthermore,
matching a current view to a position on the created map seems to be the hardest problem in many works [1], [7]. The
appearance-based place recognition has been conducted by [20] who borrowed ideas from text retrieval systems and
introduced the concept of the so called visual vocabulary. The idea was later extended to vocabulary trees by [15],
allowing to efficiently use large vocabularies. [18] demonstrated city-scale place recognition using these tree structures.
Recently, Maddern et al. report an improvement to the robustness of FAB-MAP by incorporating odometric information
into the place recognition process. [21] propose BRIEF-Gist, a very simplistic appearance-based place recognition system
based on the BRIEF descriptor, BRIEF-Gist is much more easy to implement and its performance is comparable with
FAB-MAP.

In our point of view, an incremental map is able to support us improving matching results. Therefore, different
from above systems, we create a rich map as good as possible through many travels. When new observations arrive,
these new observations must be locally and globally consistent with the previous construction. These problems are able
to solve through the loop closure algorithms [4], [14]. We pay much attentions in the creating visual dictionary
procedures of the FAB-MAP algorithm. Utilizing the GIST features [16], a holistic representation of the natural scenes,
the representative frames can be selected in order to construct a robust visual dictionary of the environments.
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1II. THE PROPOSED APPROACHES
A. Imaging acquisitions system

A hard-hold
camera

A mobile
phane camera

(a) (b)
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Fig. 1. (a) A schematic view of the visual data collection scheme. (b) The proposed imaging acquisition system in which a mobile phone camera is

attached on rear of a hand-hold camera. (c). The image acquisition system attached on a wheel vehicle

We design a compact imaging acquisition system to capture simultaneously scenes and routes in the indoor
environments. A schematic view of the data collection scheme is shown in Fig. 1(a). The proposed acquisition system
has two cameras. One camera captures scenes around the environments. The second one aims at capturing road on the
travels. The camera setting is shown in Fig. 1(b). These cameras are mount on a vehicle, as shown in Fig. 1(c). The

collection data is described in Sec.IV.A
B. The proposed framework

General proposed system is shown in Fig. 2.
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Fig. 2. The framework of the proposed system

The proposed system has two phases, as described below:

e  Off-line learning phase: Using the collected visual data, this phase creates trajectories and learns the places
along the travels. The techniques to construct the map and learning the places are described in Sec.III.C,
respectively. Because scenes and route images are captured concurrently, the constructed map contains learnt

places in corresponding positions of the travel.

e Online localization: A current view of image is described using a visual dictionary. These data associate
matching the current view to a place what is labeled in the database through a probabilistic function. The

current observation thus is able to match to a corresponding position on the constructed map.
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C. Matching image-to-map procedure

The learning places from the sequential images that collected along trajectories aims at visually presenting
appearances scenes. These visual presentations need to be easy implementation and efficient distinguishing scenes. To
adapt with these issues, we involve the FAB-MAP technique [4] which is recently successful for matching places in
routes over long period time. It is a probabilistic appearance-based approach to place recognition. Each time the image
taken, its visual descriptors are detected and extracted. In our system, we utilize SURF extractors and descriptors for
creating on a visual vocabulary dictionary. A Chow Liu tree is used to approximate the probability distribution over these
visual words and the correlations between them. Fig. 3(a)-(b) shows the extracted features and visual words to build
visual dictionary. Beyond the conventional place recognition approaches that simply compares image similarity between
two visual descriptors. FAB-MAP involves co-occur visual word of same subject in the worlds. For example, Fig. 3(c)
shows several windows subject, some of visual words are co-appearances.

Fig. 3. FAB-MAP algorithm to learn places. (a) SURF features are extracted from image sequences. (b) Visual words defined from SURF extractors.
(c). Co-occur of visual words by same object

Consequently, the distinct scenes are learnt from visual training data. For updating new places, we implement
captured images through several trials.
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Fig. 4. (a) The places are learnt and their corresponding positions are shown in the constructed map data. (b) Many new places are updated after
second trial

For each new trial, we compare the images with the previous visited places which are already indexed in a place
database. This procedure calls a loop closure detection. These detections are essential for building an incremental map.
Fig. 4 (a) shows only few places are marked by the first travel, whereas various places that are updated after the second
travel as shown in the Fig. 4(b)
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D. Distinguishing scenes for improving FAB-MAP’s performances

Although related works [8], [6] report that FAB-MAP obtains reasonable results for place recognition over long
travels in term of both precisions and recall measurements. However, those experiments were implemented in outdoor
environments which usually contain discriminate scenes. Original FAB-MAP [2] is still unresolved problems of
discriminating scenes to define visual dictionary. This issue affects to results of FAB-MAP when we deploy it in indoor
environments, where scenes are repetitive structure and ambiguous. Therefore, a pre-processing step is proposed to
handle these issues. A discriminative scenes based on holistic descriptors is deployed. The descriptors describe the
appearance of the complete scene and not of single points in it. The idea of a holistic scene descriptor is not new and was
e.g. examined by Oliva and Torralba [18] [17] with the introduction of the GIST descriptors. This global image descriptor
is built from the responses of steerable filters at different orientations and scales.

Given a set of scene images S={1,, I,,....., I} we learn key frames from S by evaluating similarity of inter-frames.
A feature vector F; is extracted for each image Ii. In this work, the GIST feature [2] is utilized to build F;. GIST presents
a brief observation or a report at the first glance of a scene that summarizes the quintessential characteristics of an image.
Feature vector F; contains 512 responses which are extracted from an equivalent of model of GIST proposed in [11]. A
Euclidean distance D; between two consecutive frames is calculated to measure dissimilarity. Fig. 5(a) shows distance
D; of a sequence including 200 frames. The key-frame then is selected by comparing D; with a pre-determined threshold
value T. Examples of selecting two key-frames are shown in Fig. 5(b)

1

0.8

0.6

0.4

02K

Fig. 5. (a) Dissimilarity between two consecutive frames. A threshold value T = 0.25 is pre-selected. (b) Two examples shows the selected key frames
and their neighbor frames

E. Localizing a place to visited one in the constructed map

Given a current view, its position on the map is identified through a place recognition procedure. We evaluate the
current observation at location L; on the map by its probability when given all observations up to a location k:

p(ZilL)p(Li|Z*1) (1)
p(Z|z* 1)

Where Z; contains visual words appearing in all observations up to k-1; and Z presents visual words at current
location k. These visual words are defined in the learning places phase. A probability p(Zi|L;) infers observation likelihood
that learnt in the training data. In our system, a L; is matched at a place k* when argmax(p(Zi|L;)) is large enough (through
a pre-determined threshold T = 0.9). The Fig. 6 shows an example of the matching procedure. Given an observation as
shown in Fig. 6(a), the most matching place is found at placelD = 12. The probability p(L{Z*) is shown in Fig. 6(c) with
a threshold value = 0.9 whose the maximal probability is placeID = 12. A confusion matrix of the matching places for
an image sequence is shown in Fig. 6(d). Although the confusion matrix shows that we can resolve almost places in a
testing phase, some misrecognition places makes troubles for navigation services. To solve some, we introduce a Kalman
filter to update current positions the vehicle, in which the current matching place is constrain in an uncertainty model.
The velocity of the robot is known in this case.

F. The Kalman Filter (KF)

p(Li|z") =

In our context, the observations of the robot are images captured over time, which then be converted to coordinates
(X, y, z) in a predefined coordinate system using above matching procedure. However, in indoor environment, the scene
does not change enough. Consecutive scenes could repeat when the robot moves. Therefore, the performance of image
matching is not good. Sometimes, a current observation could be matched with a very far forward / backward image that
makes incorrect localization of the robot.
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Fig. 6. (a) Given a current observation, (b) the most matching place. (c) The probability p(Li|Zk) calculated with each location k among K = 350
learnt places. (d) Confusion matrix of the matching places with a sequential collected images (290 frames).

To overcome this problem, we propose to use Kalman filter to correct the position of the robot from observation.
Kalman filter is one of the most popular techniques to SLAM problem. It uses a series of observations over time to
estimate unknown variables that are expected to be more precise than using single observations alone.

In our specific context, we give some notations as follows
e State vector: We suppose that the robot moves in a flat plane, so the z coordinate of the robot is constant then we

can ignore it. The state of the robot at a given time k is simply presented by its coordinates and velocity in two
directions x and y.

x= |y, (@)

e Observation vector: At ecach time where the image matching is found, the position of the robot could be estimated.
We use this information as observation in Kalman filter

zZ= [;] (3)

o State transition model Fy allows to predict the state vector at time k+/ :

Xk41 = Fk * X + Wi (4)

where wy is process noise, which is assumed to follow a normal distribution with covariance Qx: wi ~ N(0, Qx). If
the robot moves with constant vector, the simplest state transition model could be:

1 0 4t 0

po |01 0 a4 "
00 1 0
0 0 0 1

where At is the time duration of each iteration

e Observation model Hy maps the true state space into the observed space:

Z, = Hyp * x5 + vy (6)
In our case

0
1

where vy is observation noise which is assumed to be zero mean Gaussian white noise with covariance Ri: vi ~ N(0, Ry)

Hz[(l)

The Kalman filter works in two-step: prediction and update. At prediction step, Kalman filter predicts temporal
evolution of the state. Once an observation incomes, these values will be updated using a weighted average.
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At time t, the state of the filter is represented by two variables: a posteriori state estimate at time k given observations
up to and including at time k Xy, and a posteriori error covariance matrix (a measure of the estimated accuracy of the
state estimate) Py

e Prediction

Xigk—1 = Fio * Xp—1j—1 (7
Prk = FiPr—1k—1Fk + Qi (®)
e Update
+ Innovation of observation: P = 2z — Hy * Rpje—s 9)
+ Innovation of covariance: Sk = HyPr— (HL + R (10)
+ Optimal Kalman gain: Kk = Pyjk— (HiS ! (11)
o Update state estimate:
Xk = Xpk—1 + Ki Vg, (12)
e Update covariance estimate:
Pk = (I = KiHi)Prje—1 (13)

IV. EXPERIMENTAL RESULTS

A. Evaluation Environments

e Setting up environments: We examine the proposed method in a corridor environment of a building, where is
10" floor of International Research Institute MICA-Hanoi University of Science and Technology (HUST).

e Database collection: Two camera devices are mount into a vehicle as shown in Fig. 1(c). A person moves at a
speed of 1.25 foot/second along the corridor. The total length of the corridor is about 60 m. We collect data in
four times (trials), as described in Table 1

Table 1. Three rounds data results

Trials Total Scene images Total road images Duration
L1 8930 2978 5:14
L2 10376 2978 5:30
L3 6349 2176 3:25
L4 10734 2430 4:29

B. Experimental results

We evaluating the proposed system with aspects of the place recognition rate on the created map. To define visual
word dictionary as described in Sec.III.C, we use collected images from L1 trial. About 1300 words are defined in our
evaluation environments. We then use dataset from L4 travel to learn place along the travel. Totally, K = 140 places are
learnt. The visual dictionary and descriptors of these places are stored in XML files. The collected images in L2 and L3
travels are utilized for the evaluations. Visually, some matching places results from L3 travel are shown in Fig. 7.

Two demonstrations are shown in details in Fig. 7 (around position A and position B). Case A shows a query image
(from L3 travel) is matched to a learnt place. Therefore, its corresponding positions on the map is able to localize. A zoom-
in version around position A is shown in the top panel. Case B show a “no place found” that query image was not found
from learnt place database. For the qualitative measurement, we then evaluate the proposed system using two criteria:
Precision is to measures total place detected from total query images, whereas Recall is to measure correct matching places
from detected places. We setup a predetermined threshold for matching place (T = 0.9). Table 2 shows precision and recall
with L2 and L3 travels with/without scene discriminant step. For learning place (using original FAB-MAP, without scene
discrimination), the recall of L3 travel is clearly higher than L2. The main reason is that some “new” places where were not
learnt from L4 are able to update after L2 running. Therefore, more “found” places is ensured with L3 travel.
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Fig. 7. (a) Results of the matching image-to-map with L3 trial. Two positions around A and B are given. (b)-(c): current view is on the left panel

(query image); matching is on the right panel. Upper panel is a zoom-in around corresponding positions.

Table 2 also shows efficient of scene discriminations step (Sec.IV.B) the performances of image-to-map matching

obviously increasing and stable for precisions measurement with scene discrimination step, whereas high confidence of the

recalls is still consistent.

Table 2. Result of the matching places (FAB-MAP algorithms) without and with Scene discriminations

Travels 'Without scene discrimination With scene discrimination
Precision Recall Precision Recall
L2 12% 90% 67% 82%
L3 36% 85% 74% 88 %

To show effectiveness of the applying Kalman filter, Fig. 8 demonstrates navigation data without and with using Kalman

filter. Using only results place recognition (Fig. 8 — left panel), the directions supporting navigation services obviously
uncontrolled. Some matching place (show in numbers) are mess and unordered in this case. Main reasons are some places

are wrong matching (e.g., place ID = 11, shown in bottom panel). By using Kalman Filter, directions supporting navigation
services is ordered. We can clearly observe the effectiveness on Fig. 8 — right panel.

48

P 1] ——
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10 12 14 16 18 6 8 10 12 14 16 18
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Fig. 8. Position of the vehicle without/with Kalman Filter. Top row: Left panel: some positions of the vehicle on the map using only results of the
matching image-to-map procedures. The arrows show directions to guide vehicle. Numbers on left of each red box show placelD of the current
observation. Right panel: poistions of the vehicle are updated using Kalman filter. Bottom row: Left panel: show wrong matching at placelD #11. This
result yields wrong direction to vehicle. Righ panel: is a good matching at placelD = 56. No update with Kalman filter in this case.
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V. CONCLUSIONS

In this paper, we presented a vision-based system for both autonomously map building and localizing services. We

successfully created the map of the indoor environment using the visual odometry and learning places. We improved the
FAB-MAP algorithms to solve indoor recognition problems. A visual dictionary is learnt using only representative scenes
in the experimental environments. The results of matching image-to-map are high confidence for navigation service
thanks to Kalman filter. The proposed system therefore is able to provide us deploying navigating services in the indoor
environments. The proposed system directs to support blind/visually impaired peoples. The evaluations on the visually
impaired/blind people direct us to future works.
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10 Improving localization precision of visual SLAM using Kalman filter

Cai thién dd chinh xac dinh vi cta hé théng thj giac SLAM
str dung bo loc Kalman

Nguyén Quéc Hung', Vii Hai', Trin Thi Thanh Hai!, Nguyén Quan Hoan?
''Vién Nghién ctru Quéc té da phuong tién MICA - Truong Dai hoc Bach Khoa Ha Noi
2 Truong Dai hoc su pham K§ thudt Hung Yén

{OQuoc-Hung. NGUYEN, Hai.VU, Thanh-Hai. TRAN}@mica.edu.vn, quanghoanptit@yahoo.com.vn

Tém tit — Bai viét nay mé ta mot hé thong thi gidc SLAM ( dong thoi dinh vi va tw déng xdy dung ban do ) dwec phat trién trén mét
hé théng théng minh . Hé thong dirge dé xudt nham ho tro cae dich vu chuyén hudng dé ngueoi khiém thi trong méi trirong trong nha.

Hudng toi myc tiéu ndy, chung toi sur dyng thudt todn Fast Appearance-Based Mapping ( FABMAP ) dugc ding trong viéc nhdn dang
cdc vi tri xudt hién trong mot tdp vi tri quan sat dwge. Mdc di FABMAP la dang tin ¢y trong cdc tinh hudng ngodi troi, nd vén can
cai thién hon nita trong cdc moi truong trong nha, noi nhdn sang van con la mat van dé khé khan. Vi vdy, ¢6 hai cdi tién duoc dé
xudt. Thit nhat, chiing 16i dé xudt xdy dung cdc phdn doan khung canh ddc biét, néi tréi khdc biét cdc méi trieong thir nghiém. Sau do,

xdy dung mot tu dién truc quan manh mé bang thudt toan FAB- MAP, toan bo hé thong nay dwoc dat lén robot. Thir hai, chiing t6i s
dung mét bo loc Kalman dé cdp nhdt vi tri hién thoi cua robot. Vi bo loc Kalman Filter theo doi mét woc tinh khong chdc chdn 6 vi
tri robot va ciing ld khéng chdc chdn trong khung canh nhdn dang trong cdc méi triweong thir nghiém . Bang cdch nay, mét huéng kha
thi vé mét robot di dpng tinh tién va dang hoat dgng. Pdy la mét gidi phdp ma chiing t6i dang trong thoi gian tién hanh thwe nghiém,
nhimg dé xudt ciia chiing t6i ¢é y nghia phuc vu cho bdi toan robot di dong, chuyén hudng dang tin cdy tro givp di chuyén ciia nguoi
mil v nguwoi khiém thi.
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