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Abstract— This paper describes a visual-based system that 

autonomously operators for both map building and localization 

tasks. The proposed system is to assist mapping services in small 

or mid-scale environments such as inside a building or campus of 

school where conventional positioning data such as GPS, WIFI 

signals are often not available. Toward this end, the proposed 

approaches utilize only visual data. We design an image 

acquisition system for data collections. On one hand, a robust 

visual odometry method is utilized to create routes in the 

environment. On the other hand, the proposed approaches utilize 

FAB-MAP (Fast Appearance Based Mapping) algorithm that is 

maybe the most successful for recognizing places in large 

scenarios. The building route and learning visited places are off-

line process in order to represent a map of environment. Through 

a matching image-to-map procedure, the captured images at 

current view are continuously positioned on the constructed map. 

This is an online process. The proposed system is evaluated in a 

corridor environment of a large building. The experimental results 

show that the constructed route coincides with ground truth, and 

matching image-to-map is high confidence. The proposed 

approaches are feasible to support visually impaired people 

navigating in the indoor environments. 

Keywords— Visual Odometry, Place Recognition, FAB-MAP 

algorithms. 

I.  INTRODUCTION  

Understanding and representing environments have been 
research topics over long period of time in field of the 
autonomous mobile robots. These works aim to answer two 
questions. Given a representation of the environment, the first 
question is that “What does the world look like?” (or building a 
map of environment). In contrast to this, the localization service 
is to estimate the pose of object of interest relative to a position 
on the created map. It is to answer the second question “Where 
am I?” (Positioning the object of interest on the created map). 
To solve these questions, the positioning data come from 
various types of sensors such as GPS, WIFI, and LIDAR. 
However, these conventional source data are not always 
available or convenient for acquisitions, particularly, in small 
or moderately environments. For example, GPS systems 
provide the mapping services in strict conditions such as good 
weather, outdoor environments, no presence of buildings. It is 
highly cost to setup LIDAR systems in the environments, where 
are mid-scale areas like campus of school, hospital. WIFI 
systems are also not easily installing to cover such 
environments. To overcome these issues, this paper presents a 
vision-based system that utilizes only the visual data. 

Advantages of using such data are that it is safe, flexible, 
provides a very rich and valuable perception information of the 
environments. The proposed system aims to automatize the map 
building and localization services, particularly, to serve the 
mapping services in indoor environments. 

 In this work, the map building consists of creating 
trajectories and learning scene elements from the evaluated 
environment. We simultaneously collect visual data of the 
routes and scenes using an own-designed imaging acquisition 
system. A robust visual odometry technique that tends to use 
only one consumer-grade camera is adapted in order to build 
the trajectories. In order to learn places in the environment, we 
utilize so-called loop closure detections method [2, 3]. For the 
localizing task, an agent (such as vehicle, robot, and human) 
needs only consumer-grade camera (e.g., mobile camera of a 
tablet) for capturing images. A current view is matched to the 
place database through a probabilistic model of the FAB-MAP 
(Fast Appearance Based Mapping) algorithms. It is notice that 
our proposed system is not able to update new positions against 
the created map. We simply past new places using a simple 
motion that is based on positions of the closest neighbor places. 
The proposed system is evaluated in a corridor environment of 
a large building. Experimental results show that we successfully 
create a map of the evaluated environment. The results of 
matching image-to-map are 20% precision and 100% recall. It 
is feasible results for developing navigation services in the 
evaluated environment.  

The next sections of paper are organized as follows: In 
Section II, we briefly survey related works. In Section III, we 
present our vision-based system for autonomous map building 
and localization tasks. We report the experimental results in 
Section IV. Finally, we conclude and give some directions for 
future works. 

II. RELATED WORKS 

Vision-based mapping and localizing services are 
fundamental topics in field of mobile robotics and computer 
visions. There are uncountable publications of these topics. 
Readers can refer a good survey in [2]. In this section, we focus 
on recent advanced techniques in the field of computer vision 
that offer substantial solutions with respect to localization and 
navigation services in known or unknown environments. 
Alcantarilla [4] utilizes well-known techniques such as 
Simultaneous Localization and Mapping (SLAM) and Structure 
from Motion (SfM) to create 3-D Map of an indoor environment. 
He then utilizes means of visual descriptors (such as Gauge 
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Speeded Up Robust Features, G-SURF) to mark local coordinate 
on the constructed 3-D map. Instead of creating a prior map, Lui 
et al. [5] utilize a pre-captured reference sequence of the 
environment. Given a new query, their system desires to find the 
corresponding set of indices in the reference video. By means of 
visual SLAM techniques, some wearable applications are 
proposed. Pradeep et al. [8] present a head-mounted, stereo-
vision for detecting obstacles in the path and warn subjects about 
their presence. They incorporate visual odometry techniques and 
metric-topological SLAM. Murali et al. in [9] estimate relative 
location relative of users to the crosswalks in the current traffic 
intersection. They develop a vision-based smart-phone system 
for providing guidance to blind and visually impaired. The 
system of Murali et al. in [9] requires supplemental images from 
Google Map services, therefore it is suitable with travels at 
traffic intersections only.  

Complexity of the map building varies in function of the 
environment size. For example, indoor environments are more 
complex than outdoor environments because of the office 
supplies as chairs, tables, etc. Furthermore, matching a current 
view to a position on the created map seems to be the hardest 
problem in many works [2],[10]. In this work, we solve these 
issues through an incremental map which is able to increase 
accuracy of the matching procedures. Therefore, different from 
these systems, our approaches learn places in an environment 
through many trials. When new observations appear, they must 
be locally and globally consistent with the previous 
construction. These problems are able to solve through the loop 
closure algorithms [3],[11]. However, major differences from 
those work are that our proposed system utilize only visual data 
for both map and localization services, whereas the works in 
[3],[11] use GPS data for localizing visited places on the map. 
Furthermore, localization services suffer from limitations of 
consume-grade camera so that matching image-to-map’s 
performance is acceptable. 

III. PROPOSED APPROACHS 

A. Imaging acquisitions system 
We design a compact imaging acquisition system to capture 

simultaneously scenes and routes in the environments. 

 
Fig. 1. (a) A schematic view of the visual data collection scheme. (b) The 
proposed imaging system. Mobile phone camera is attached on rear of a hand-
hold camera. (c) The cameras are mounted on wheel-vehicle. 

A schematic view the system is shown in Fig. 1(a). It has two 
cameras. One captures scenes around the environment. The 
second one captures road on the travel. Setting of two cameras 
is shown in Fig. 1(b). These cameras are mounted on a wheel-
vehicle, as shown in Fig. 1(c). The detail of the collected data in 
an evaluated environment is described in Section IV. 

B. The proposed framework 

 
Fig. 2. The framework of the proposed system 

 Offline learning: Using the collected visual data, this 
phase creates the trajectories and learnt the places along 
the travels. The techniques to construct the map and 
learning the places are described in Sec.III.C, Sec.III.D, 
respectively. Because scenes and route images are 
captured concurrently, the constructed map contains 
visited places and their corresponding positions. 

 Online localization: A current observation is described 
using visual words. These data are associated matching 
procedure to the places which are indexed in a database. 
The current pose thus is localized on the constructed 
map. 

C. Route building based on visual odometry techniques 
To build route of the travel , we utilize a visual odometry 

method proposed by Van Hamme et al [1]. The method is based 
on the tracking of ground plane features. Please refer [1] for 
details of the algorithms. In this section, we describe our 
adaptations to the algorithms in [1]. 

 
Fig. 3. The scheme for collecting road images. (a). Setting of the camera. (b) 
Scattering makers on the evaluated route. (c). A zoom-in version around a 
position in (b). 

The algorithms in [1] are designed to take into account the 
uncertainty on the vehicle motion as well as uncertainty on the 
extracted features. However, well-known issues for visual 
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odometry techniques are that they need to estimate precisely 
correspondences between the features of consecutive frames. 
Once the feature correspondences have been established, we can 
reconstruct the trajectory of the vehicle. Our image acquisition 
system setups a camera so that it is perpendicular to the ground 
plane, as shown in Fig. 3(a). We also scatter markers in the 
whole journey as shown in Fig. 3(b-c). Because the detected 
features are projected on a ground plane, results of the detecting 
and matching features are more precisely. We compare our 
results with/without using man-makers in  Fig. 7 The learning 
places aims to visually present scenes along the travel. These 
visual presentations need to be easy implementation and 
efficient distinguishing scenes. To adapt with these issues, we 
involve the FAB-MAP algorithms [3] which are recently 
successful for matching places in routes over long period time. 
The FAB-MAP is a probabilistic appearance-based approach to 
place recognition. 

Each time the image taken, its visual descriptors are detected 
and extracted. In our system, we utilize SURF extractors and 
descriptors for creating on a visual vocabulary dictionary. A 
Chow Liu tree is used to approximate the probability distribution 
over these visual words and the correlations between them. Fig. 

4(a)-(b) shows the extracted features and visual words to build 
visual dictionary. 

 
Fig. 4. FAB-MAP algorithm to learn places. (a) SURF features are extracted 
from image sequences. (b) Visual words defined from SURF extractors. (c). 
Co-occur of visual words by same object 

Beyond the conventional place recognition approaches that 
simply compares image similarity between two visual 
descriptors. The FAB-MAP involves co-occur visual word of 
same subject in the worlds. For example, Fig. 4(c) shows 
window subject in various contexts, but several visual words are 
co-appearances. 

 
Fig. 5. (a) The places are learnt and their corresponding positions are shown in the constructed map data. (b) Many new places are updated after second trial 

Consequently, the distinct scenes are learnt from visual 
training data. For updating new places, we implement captured 
images through several trials.  

For each new trial, we compare the images with the previous 
visited places which are already indexed in a place database. This 
procedure calls a loop closure detection. These detections are 
essential for building an incremental map. Fig. 5 (a) shows only 
few places are marked by the first travel, whereas various places 
that are updated after the second travel as shown in Fig. 5(b). 

D. Matching image-to-map procedure 
Given a current view, its position on the map is identified 

through a place recognition procedure. We evaluate the current 

observation at location Li on the map by its probability when 
given all observations up to a location k: 

(|ܼܮ)ߩ =
ఘ൫ܼหܮ൯ఘቀܮቚܼିଵቁ

ఘቀܼቚܼିଵቁ


Where Zk contains visual words appearing in all observations up 
to k-1; and Zk presents visual words at current location k. These 
visual words are defined in the learning places phase. A 
probability p(Zk|Li) infers observation likelihood that learnt in 
the training data. In our system, a Li is matched at a place k∗ 
when argmax(p(Zk|Li)) is large enough (through a pre-
determined threshold T = 0.9). Fig. 6 shows an example of the 
matching procedure. 
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Fig. 6. (a) Given a current observation, (b) the most matching place. (c) The 
probability p(Li|Zk) calculated with each location k among K = 350 learnt 
places. (d) Confusion matrix of the matching places with a sequential collected 
images (290 frames). 

Given an observation as shown in Fig. 6(a), the most 
matching place is found at placeID = 12. The probability p(Li|Zk) 
is shown in Fig. 6(c) with a threshold value = 0.9 whose the 
maximal probability is placeID = 12. A confusion matrix of the 
matching places for an image sequence is shown in Fig. 6(d). 
This example shows that we can resolve almost places in a 
testing phase. 

IV. EXPERIMENTAL RESULTS 

A. Evaluation Environments 
 Setting up environments: We examine the proposed 

method in a corridor environment of a building, where is 
10th floor of International Research Institute MICA-
Hanoi University of Science and Technology (HUST).  

A 3-D model of the evaluation environment is shown in 
Fig. 7(c).  

 Database collection:  Two camera devices are mount 
into a vehicle as shown in Fig. 1(c). A person moves at a 
speed of 1.25 foot/second along the corridor. The total 
length of the corridor is about 60 m. We collect data in 
four times (trials), as described in TABLE I.  

TABLE I.  THREE ROUNDS DATA RESULTS 

Trials Total Scene images Total road images Duration 

L1 8930 2978 5:14 

L2 10376 2978 5:30 

L3 6349 2176 3:25 
L4 10734 2430 4:29 

B. Experimental results 
Results of the constructed map using original work of Van 

Hamme et al [1] is shown in Fig. 7(a), whereas the reconstructed 
travels using proposed method are shown in Fig. 7(b). As shown, 
the results of route building from three travels are quite stable. 
All of them are matched to ground truth that are plotted in green 
dash-line in a model 3-D of the evaluation environments, as 
shown in Fig. 7(c). The proposed method gives substantial 
results comparing with the original one [1].  We believe that 
creating highly textures on the ground plane is efficient for 
detecting and matching the features. Even the original 
algorithms [1] are designed to be robust with uncertainty of the 
detected features; but more precisely the features matching more 
higher quality creating the map. We continue evaluating the 
proposed system with aspects of the place recognition rate on 
the created map. To define visual word dictionary as described 
in Sec.III.D, we use collected images from L1 trial. About 
W=1300 words are defined in our evaluation environments. We 
then use dataset from L4 travel to learn visited places along the 
travel. Totally, K = 140 places are learnt. The visual dictionary 
and descriptors of these places are stored in XML files.

 
Fig. 7. (a) The travel reconstructed using original works [1]. (b) Results of three time travels (L2, L3, and L4) using proposed method. (c) A 3-D map of the 
evaluation environment. The actual travels also plotted in green dashed line for comparing results between (a) and (b). 
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Fig. 8. (a) Results of the matching image-to-map with L3 trial. Two positions around A and B are given. (b)-(c): current view is on the left panel (query image); 
matching is on the right panel. Upper panel is a zoom-in around corresponding positions. 

 

 
Fig. 9. (a) A blind pupil wearing Samsung tablet and ear-phone for voice control. (b) The results of his travel in the evaluated environment. The places on his travel 
are marked on the constructed map in red-rectangles. Four examples at [A], [B], [C], and [D] are marked on the map. (c) Corresponding images at [A], [B], [C], and 
[D] captured by a surveillance camera, for monitoring his travel. (d) - right panels are current views at those places captured by the camera on tablet. Left panels are 
corresponding matched places taken out from the place database.
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The collected images in L2 and L3 travels are utilized for the 
evaluations. Visually, some matching places results from L3 
travel are shown in Fig. 8. Two demonstrations are shown in Fig. 
8 (around position A and position B). Case A shows a query 
image (from L3 trial) is matched to a visited place. Therefore, its 
corresponding position on the map is able to localize. A zoom-in 
version around position A is shown in the top panel. “No place 
found” in Case B means that the query image was not found from 
the place database. For the quantitative measurement, we then 
evaluate the proposed system using two criteria: Precision is to 
measures total place detected from total query images, whereas 
Recall is to measure correct matching places from detected 
places.   

A threshold for matching place T = 0.9 is predetermined. 
TABLE II. shows results of the precision and recall with L2 and 
L3 trials. The recall of L3 travel is clearly higher than L2. The 
main reason is that some “new” places, where were not learnt 
from L4 trial, are updated after running L2 trial. Therefore, more 
“found” places are updated through L3 travel. Recall obtains 
100% inferring that it is high confidence at the detected places 
despite of changing view-point of scenes (because of different 
travels). It is notice that although experimental results report low 
precisions (due to case of “no place found” of Case B in Fig. 8), 
it is acceptable for the localization service. Some neighbor places 
(as shown in the zoom-in version of case B in Fig. 8) suggest us 
interpolating positions of the query image. Furthermore, an agent 
(a robot or wheel-vehicle) moves approximately at speed of 10 
cm/sec and computational time of the matching image-to-map 
procedure at 1 frame/sec. Therefore, the precision at 20% 
(averagely) means that by moving a distance of 100 cm (10 
frames captured), 2 positions (within a distance of 1 m) are 
confidence located (100% recall). 

TABLE II.  RESULT OF THE MATCHING PLACE 

Travels Precision Recall 

L2 12% 100% 

L3 36% 100% 
 

We then preliminary deploy the proposed approaches to 
assist navigating services to a blind pupil. He is asked to travel 
in the evaluated environment (as shown in Fig. 7(c)), where is 
new environment from his knowledge. Currently, we setup a 
voice control system to guide the blind pupil. Furthermore, for 
creating ground truth of the localization services in this 
evaluation, we setup a surveillance camera in the environment. 
This system also supports us monitoring his travels.  

The blind pupil wears a tablet with frontal camera and an ear-
phone as shown in Fig. 9(a). According to guidance by voice 
control, he could go whole travel in the corridor environment. 
The image data collected from the tablet is send through a WIFI 
network. Results of the matching image-to-map is shown in Fig. 
9(b) in red spots. The query and matching results of some places 
(e.g., [A], [B], [C], [D]) are shown in Fig. 9(c) and Fig. 9(d), 
respectively. Distances between these places are from minimal 
values of 0.3 m (around [A]) to maximal values of 5m (around 
[C], [D]).  The blind pupil is asked to travels three times. We 

obtain average performances of the matching procedure that are 
18% precision at 85% recall. These results are not so far from 
TABLE II. In other words, we could match precisely positions 
the blind people using the constructed map. These results are 
feasible to deploy automatic navigating system. 

V. CONCLUSIONS  
In this paper, we presented a vision-based system for both 

autonomously map building and localizing services. We 
successfully created the map of the indoor environment using 
the visual odometry and learning places. The results of 
matching image-to-map are high confidence. Therefore, the 
proposed system is able to provide us deploying navigating 
services in the indoor environments. The proposed system 
directs to support visually impaired peoples in such 
environments. A current issue of the proposed approaches is 
that the number of “place found” is quite limited in the 
experiments.  The motion models and particle filter algorithms 
suggest us directions to further research. Further evaluations 
with complex environments are also needed. 
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