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Abstract—This paper describes a fusion technique for species
identification from images of different plant organs. Given a
series of image organs such as branch, entire, flower or leaf,
we firstly extract confidence scores for each single organ using
a state-of-the-art deep convolutional neural network (CNN).
After that, we deploy various schemes of the fusion approaches
including not only conventional transformation-based approaches
(sum rule, max rule, product rule) but also a classification-based
approach (support vector machine). Then we proposed a hybrid
fusion model. To measure the performances of the combination
schemes, a large number of images of 50 species which are
collected from two main resources: PlantCLEF 2015 dataset and
the Internet resources. The experiment exhibits the dominant
results of the fusion techniques compared with those of individual
organs. At rank-1, the highest accuracy of a single organ is 73.0%
for flower images, whereas by applying our proposed fusion
technique for leaf and flower, the accuracy reaches to 89.8%.

Index Terms—Convolutional Neural Network, Deep Learning,
Fusion, Plant Identification.

I. INTRODUCTION

Plant identification plays an important role in our daily
life. Nowadays, automatic vision-based machines for the plant
identification usually utilizes image(s) from individual plant
organ such as leaf [1], [2], [3], flower [4], branch [5] etc.
They have gained a considerable attention of researchers in
the fields of multimedia retrieval, computer vision and pattern
recognition. In recent competitions for the plant identification
(e.g., PlantCLEF 2014, 2015, 2016 and 2017), deep learning
technique has emerged as an efficient tool. However, with a
large number of species, the accuracy of the identification task
using a single organ is still limited. Beyond the performance
issues of the classifiers, using images from individual plant
organ has also some practical and botanical limitations. For
instance, the appearance of the leaf can be easily changed
by temperature, weather condition. Some leaves of specific
species are often too young or too much depends on periods
of the year. The appearance of flowers is more stable and less
variant with such changes. Some organs (e.g., flower, or fruit
or even leaves) are not visible all over the year. Following
the point of view of botanists and biological experts, images
from alone plant organ could not be enough information
for the identification task. They also comment that there are
many practical situations where separating species can be very

difficult by just observing leaves, while it is indisputably easier
with flowers. In this paper, we propose to use combinations
of multi-organ images using some fusion techniques, which
combine the confidence scores from some single organs. The
main objectives of the study are to answer following questions:
which fusion approach is the most effective; and a combination
of which pair of organs returns the best performance. The
fusion techniques are: (1) transformation-based approaches [6]
such as sum rule, max rule, and product rule; (2) classification-
based approaches [6]; (3) our proposed robust hybrid fusion
(RHF). Each pair of organs is combined and examined with
these fusion approaches. We experiment in four types of
organs: leaf, flower, branch and entire because they are more
common than other ones (e.g., fruit, stem, root). We firstly
deploy a deep CNN that could achieve the higher performance
than conventional hand-designed feature approaches. However,
it is noticed that the performances of a CNN strongly depend
on image varieties within each species in the training dataset.
The performances of the plant identification task could be
increased when the number of images for each species is
large enough. Specially, a large number of images of each
plant organ with same species is required in context of the
multi-organ combination. Therefore, we take into account
collecting the images of different organs of same species
for the context of the multi-organ combination. Our proposal
fusion methods show a significant improvement compared
with the identification accuracy of images from an individual
plant organ. The rank-1 accuracy of the identification increases
more than 10% by fusing flower and leaf with product rule
and the proposed robust hybrid fusion.

This paper is organized as follows: Section II surveys
relevant works of the plant identification and the fusion ap-
proaches. The single organ identification using a convolutional
neural network is described in Section III. In Section IV, we
present the combinations of multi-organ images with various
fusion schemes. Section V shows the experimental results. The
conclusion and discussions are given in Section VI.

II. RELATED WORK

A. Plant identification

Since the last decade, the plant identification tasks mainly
utilize images from leaves on a simple background [7], [8],



[9], [10], [11] because leaves usually exist in whole year and
are easily collected. However, leaves often do not have enough
information to identify a plant species. The plant identification
task has recently been expanded with images [12], [13] from
different organs such as leaf, flower, fruit, and stem, entire
on complex background so that the identification rates are
better. The performances of the recent approaches are listed
in a technical report of the LifeCLEF 2015 [5]. Readers can
also refer a recent comprehensive survey on plant species
identification using computer vision techniques in [14].

There are two main approaches for the plant identification
task. The first one uses hand-designed feature [15], [16], [7]
where the automatic vision-based machines applied a variety
of generic feature extraction and classification techniques.
The common features [14] are morphological, shape-based,
color, textures, while the Support Vector Machines (SVM) and
Random Forest (RF) are common classifiers. These approaches
are steady but achieve low performances when facing with a
large number of species such as 500 species in PlantCLEF
2014, 1000 species in PlantCLEF 2015/2016 datasets [5]. The
second one employs the deep learning techniques. Convolu-
tional neural networks (AlexNet, VGGNet, GoogLeNet and
ResNet) obtained state-of-the-art results in many computer
vision tasks [17], [18]. The teams utilizing deep learning tech-
niques are top winners in PlantCLEF 2014 competition [19].
The winner used AlexNet from scratch to classify 500 plant
species. Continuing this success, many research groups have
used the deep learning approaches for the plant identification
[5], [20]. GoogLeNet and VGGNet are used by most teams in
the PlantCLEF 2015/2016 competition, including the winning
team. In [21], a CNN is used to learn unsupervised feature
representations for 44 different plant species collected at the
Royal Botanic Gardens, Kew, England. Nhan et al. [22] carried
out and analysed a comparative evaluation between hand-
designed features and deep learning approaches. They show
that CNN-based approaches are significantly better than the
hand-designed schemes.

The fact that the state-of-the-art results of the plant iden-
tification using a single organ are still far from practical
requirements. For example, the current best rank-1 accuracy
of the plant identification is approximately 75% by using
flower images. In our empirical evaluation, this performance is
significantly reduced when the number of species is increased.
The classifiers utilizing the image(s) from individual organs
face a challenge that is the small variation among species,
and a large variation within a species. Therefore, some recent
studies propose the combinations of multiple organs of plants
[12], [13]. The late fusion techniques are the common ways
to combine identification results from the single organs. The
authors in [22] showed that a combination of leave and flower
images produces positive results. In this paper, we examine
various score-based level fusion to answer the questions that
which ones achieve the best performances and which pair of
organs could achieve the best identification results.

B. Summary of fusion information techniques

According to the information fusion theory, fusion schemes
could be divided into four categories [23]: sensor level, feature
level, score level, and decision level. Sensor level fuses the
raw data from varied source at image level or pixel level.
For example, a 2-D image of face and the structure of this
face could be combined to construct a 3-D image. Feature
level fusion [23] combines two or more feature vectors into
an individual one. They should be normalized to a common
scale before the fusion. For example, Arun et al. [24] deployed
a human recognition system by applying the fusion strategies
for hand and face at feature level. He et al. [13] used a multi-
column deep convolutional neural network for multi-organ
plant identification. The inputs of each column are the different
organs of the plant. He used AlexNet for features extraction
in each column before fusing all of it by some fully connected
layers. The score-based level approaches utilize the similarity
or confidence scores between an input/probe features and
the template ones in the gallery. These approaches combine
the scores from different sources to a unique form which
is able to deploy as common classification. In decision level
fusion, the results from different sources are combined using
several techniques, such as AND and OR Rules, Bayesian
decision fusion [24], to provide the final one. Although the
matching/confidence scores contain less information than the
raw image or the feature vectors, they hold the most important
information on the identification/classification task. Utilizing
the matching/confidence scores is also easier to deploy various
fusion strategies. For this reason, in this study, we deploy
score-based fusion schemes which aim to combine matching
scores from images of individual plant organs for resolving
the plant identification task.

C. The score-based level fusion strategies

The score level fusion can be categorized into three groups:
transformation-based approaches, classification-based ap-
proaches, and density-based approaches [6]. In transformation-
based approaches, the matching or confidence scores are
normalized first. Then they are fused by using various rules,
such as min rule, product rule or sum rule, to calculate a final
score. The final decision then is marked based on that score.
Nhan et al. [22] used the sum rule to combine identification
results from leaf and flower images and got the better result
than single organ. In classification-based approaches, multiple
scores are treated as feature vectors and a classifier, such as
Support Vector Machine and Random Forest, is constructed
to discriminate each category. The signed distance from the
decision boundary is usually regarded as the fused score. The
last group, density-based approaches guarantee the optimal
fusion as long as the probability density function of the score
given for each class is correctly computed. However, such kind
of approaches are suitable only for verification issue, but not
for identification task. In this paper, we deploy two first types
of the score-based level fusions: transformation-based, and
classification-based approaches. We apply sum rule, max rule
and product rule for the transformation-based approaches. We



build a SVM classifier using the confidence scores of different
plant organs for the classification-based approaches.

III. SINGLE ORGAN IDENTIFICATION USING
CONVOLUTIONAL NEURAL NETWORKS

AlexNet, which is developed by Alex Krizhevsky, Ilya
Sutskever and Geoff Hinton [18], is the first CNN that has
become the most popular nowadays. It succeeds in the Im-
ageNet Large-Scale Visual Recognition Challenge (ILSVRC)
dataset [25] with roughly 1.2 million labeled images of 1, 000
different categories. The AlexNet’s architecture [18] is shown
in Fig. 1. It has approximately 650,000 neurons and 60 million
parameters. There are five convolutional layers (C1 to C5), two
normalization layers, three max-pooling layers, three fully-
connected layers (FC6, FC7, and FC8), and a linear layer with
a softmax classification in the output. In this study, Alexnet is
deployed on a common PC with two Intel Core i5, 01 Nvidia
Geforce GPU 4 GB, 16 GB RAM. We fine-tuned AlexNet with
the pretrained parameters of AlexNet in ImageNet dataset.
The output of the softmax function is 50 classes instead of
1000 classes as the default. The main reason is that AlexNet
runs quite fast on common PC or workstation and achieves
comparative results compared with some recent CNNs such
as GoogleNet, VGGNet. On the other hand, we focus more
on fusion approaches than improving the result for each single
organ.

In the test phase, the output matching/confidence scores
obtained for an image is an n-dimensional vector S = {si},
0 ≤ si ≤ 1, where n is the number of species. This vector
refers the confidence scores to all available species. In other
words, it is a prediction for a certain species. As notated, {si}
is the confidence score to ith plant species.

Fig. 1. AlexNet architecture [18]

IV. THE PROPOSED FUSION STRATEGIES

A. Transformation-based approaches

We combine the identification results from N images of two
organs as the following rules. Given q is the query-images of a
pair of organs, score(Ii, species) is the matching or confidence
score when using image Ii as a query from a single organ.

Max rule is one of the most common transformation-based
approaches. Maximal score is selected as the final score:

score(q, species) =
Nmax
i=1

score(Ii, species) (1)

Sum rule is also the representative of the transformation-
based approaches. Summation of the multiple scores provides
a single fused score. It is defined by:

score(q, species) =
N∑
i=1

score(Ii, species) (2)

Product rule is based on the assumption of statistical inde-
pendence of the representations. This assumption is reasonable
because observations (e.g., leaf, flower, entire) of a certain
species are mutually independent. This allows us using images
from multi-organ in order to make a product rule for the plant
identification task. The product rule is defined by:

score(q, species) =
N∏
i=1

score(Ii, species) (3)

B. Classification-based approaches

The score-based level fusion can be formed as a
classification-based approach. Once the multiple confidence
scores are concatenated into a single feature vector, we can
build a binary or multiple classifier. In this study, we adopt
works in [6] which deploys a classification-based approach for
fusing multiple human gait features. The plant identification
task is formed as a one-versus-all classification. We define a
positive/negative sample as a pair of scores at the true/false
position of species. Positive and negative samples are chosen
as shown in the Fig. 3. A SVM classifier is trained by using
positive and negative training samples in the score space.

The distribution of positive and negative samples, which are
obtained from confidence scores of branch and leaf images,
is shown in Fig. 2. In the test phase, after pushing a pair
of organs into CNNs model, we have a pair of score vectors
correspondingly. We split it into n pairs where n is the number
of species. Then we push each pair into SVM classifier and
we keep it if it is a positive sample. The species of the positive
sample, which has maximum distance to the decision bound,
is the label of pair of organs.
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Fig. 2. Distributions of negative and positive samples formed based on the
branch and leaf scores
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C. The proposed robust hybrid fusion

The above classification-based approach can lose distribu-
tion characteristics for each species because all positive and
negative samples of all species are merged and represented
in a metric space only. Therefore, we build each species a
SVM model based on its positive and negative samples. For
example, Fig. 4 shows a score’s distribution of a specific
species. When we input a pair of organ to our model, we
will know the probability that it belongs to each species by
these SVM classifiers. Then we combine this probability with
the confidence score of each organ. As far as we know, q is the
query of a pair of two image organs; and score(Ii, species)
is matching or confidence score when using image Ii . Let’s
denote the probability probpos that q is a positive sample
of the species SVM model. Our robust hybrid fusion model
therefore is formed as independence observations:

score(q, species) = probpos

( N∏
i=1

score(Ii, species)
)

(4)

This model is an integration between a product rule and
a classification-based approach. We expect that the positive
probability of point q affects the fusion result. If the positive
probability of point q is high, the probability of point q
belonging species is high, too.

V. EXPERIMENTAL RESULTS

A. Collecting the database

The proposed fusion strategies are evaluated with four types
of organs including: leaf, flower, entire and branch. For de-
ploying a CNN successfully, it always requires a large training
data. Moreover, for deploying multi-organ plant identification,
we must be ensured with different organs of same species. The
fact that even with a large PlantCLEF 2015 dataset, there are
only 12.5% observations that have at least 2 organs [13].
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Fig. 4. Distributions of negative and positive samples formed based on the
branch and leaf scores for species id 8

TABLE I
THE COLLECTED DATASET OF 50 SPECIES WITH FOUR ORGANS (LEAF,

FLOWER, ENTIRE AND BRANCH IMAGES)

Flower Leaf Entire Branch Total

CNN Training 1649 1930 825 1388 5792

SVM Input 986 1164 493 833 3476

Testing 674 776 341 553 2344

Total 3309 3870 1659 2774 11612

Species number = 50

In this study, we deploy the following scheme in order to
enrich the experimental dataset of the plant species. Firstly,
we extract the most common species (the species with the
largest number of images) from PlantCLEF 2015 dataset [5]
which is collected from West Europe with more than one
hundred thousand pictures of 1000 plant species. PlantCLEF
2015 dataset is one of the largest plant dataset in the world. As
result, we collect 50 species which consist of largest number
of observations. We used Bulk Image Downloader, which is a
powerful tool for collecting images from Internet resources, to
collect more data using species’ name. The searching results
are manually screened later. The details of our final evaluation
dataset are shown in Table I. The average of images for each
organ of each species after enrichment is larger than 50. This
is larger than the original of PlantCLEF 2015 dataset.

The collected dataset is separated into three parts with the
ratio 5:3:2 respectively. The first part is the training data of
CNN for single organ identification, as explained in Section
III. We used the third part of the dataset to evaluate the
performances of CNN and late fusion methods. For the fusing
based on classification approaches, to deploy a SVM classifier,
the results from the second part of the dataset returning from
CNN was used as training dataset of the SVM model. In
order to balance the number of positive and negative sample,
we randomly collect the negative points instead of taking
all of those. The proposed hybrid fusion scheme utilizes the
testing schemes of the product rule and the classification-based
approaches.



TABLE II
THE ACCURACY RATE OF THE PLANT IDENTIFICATION USING IMAGES

FROM SINGLE PLANT ORGAN

Organ Rank-1 (%) Rank-5 (%)

Leaf (Le) 66.2 89.8

Flower (Fl) 73.0 90.8

Branch (Br) 43.2 70.4

Entire (En) 32.4 64.0

B. Evaluation measurement

We use an accuracy rate of the identification to evaluate the
performances of the proposed fusion approaches. It is defined
by:

Accuracy =
T
N

(5)

where T is the number of true predictions, N is the number
of queries. A query is correctly identified if the relevant plant
is in the k first species returned from the retrieved list. We
compute accuracy at rank-1 and rank-5 in our experiments.

C. Experimental results

The experimental results show that all the fusion techniques
highly improve the accuracy rate compared with utilizing
images from an individual organ. As clearly shown in Table
II and Table III, the best performance for single organ is
73.0% for flower images, whereas by applying the proposed
RHF, the accuracy rate of a combination between leaf-flower
images dramatically increase by 16.8% to 89.8%. Not only
the leaf-flower scenario, but in all six pairs of multi-organs
combination, the product rule and its variants RHF also retain
the highest performances. The other fusion performances are
also higher than those of single organ, but lower than these
fusion schemes.

We continue evaluating the performance of the proposed
fusion schemes using Cumulative Match Characteristic curve
(CMC), as shown in Fig. 5. It measures the plant identification
performances at various rank. The better performance, the
higher CMC is achieved. The higher CMCs are obtained with
the most of fusion schemes. The best CMC is obtained by
combination of Flower-Leaf with the RHF fusion.

In order to further evaluate advantages of the proposed
fusion schemes, we attempt to find out the rank-k so that
the accuracy of the plant identification reaches 99%. In this
evaluation scenario, the fusion performances are better than
those of single organs. The detailed results are given Table
IV. Besides, the RHF and product rule continue showing the
significant performance compared with the results of other
techniques. With leaf-flower combination, it can reach the
accuracy 99% at rank-7 for Product Rule, or rank-9 for RHF.
This is much lower than the best case of using images from
a single organ, where rank-27 is required.

TABLE III
THE ACCURACY RATE OF TWO-ORGANS COMBINATIONS

Accuracy (%) Max rule Sum rule PR SVM RHF MC

En - Le
R1 66.2 67.2 75.6 74.0 76.6 46.7
R5 88.6 88.8 93.2 81.8 94.6 70.8

En - Fl
R1 73.8 74.4 78.8 77.2 81.2 73.7
R5 92.6 92.8 94.2 84.2 94.4 90.8

Le - Fl
R1 81.6 82.0 88.6 86.2 89.8 74.2
R5 96.8 96.8 98.2 90.4 98.4 90.5

Br - Le
R1 70.2 71.0 76.8 73.8 78.4 39.8
R5 89.6 90.0 93.4 79.6 93.8 67.5

Br - Fl
R1 74.2 75.4 80.8 79.0 81.4 64.1
R5 90.8 91.4 95.2 83.0 95.4 84.0

Br - En
R1 51.6 52.2 58.0 58.0 58.6 34.2
R5 76.8 77.6 83.6 81.4 83.8 58.8

1PR means Product rule. 2The result of MC [13] is for reference only
because of our different evaluation environments.

TABLE IV
RANK NUMBER (K) TO ACHIEVE THE ACCURACY RATE OF 99%

En-Le En-Fl Le-Fl Br-Le Br-Fl Br-En

Organ 1 42 42 27 46 46 46

Organ 2 27 29 29 27 29 42

Sum rule 17 24 10 21 25 25

Max rule 19 24 10 23 25 26

Product rule 16 20 7 22 18 25

SVM 50 50 50 50 50 50

RHF 14 19 9 19 18 25

VI. CONCLUSIONS

This paper examined various fusion schemes for the plant
identification using multi-organ images. The experiments show
that the fusion techniques increase dramatically the perfor-
mances for the plant identification task. In addition, our robust
hybrid fusion model presents the best results in all evaluation.
It is an evidence for the statement that the results from CNN
of single organs are independent. In future work, we attempt
to find the way to automatically combine the results without
knowing the type of organs. It is clear that, in most situations,
an image could contain more than one organ. Therefore, our
second task is to automatically detect the type of organ or a
learning scheme so that weight of the organ can be identified.
By combining two tasks, we support the end-user getting
the high performance without knowing which type of organ
actually is or even automatically investigating semantic organs
in the queries.
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